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ABSTRACT 
 
 
 

HIGH-LEVEL, PRODUCT TYPE-SPECIFIC, PROGRAMMATIC 

OPERATIONS FOR STREAMLINING ASSOCIATIVE 

COMPUTER-AIDED DESIGN 

 
 

Nathan W Scott 

Department of Mechanical Engineering 

Master of Science 
 
 
 

Research in the field of Computer Aided Design (CAD) has long focused on 

reducing the time and effort required of engineers to define three dimensional digital 

product models.  Parametric, feature-based modeling with inter-part associativity allows 

complex assembly designs to be defined and re-defined while maintaining the vital part-

to-part interface relationships.  The top-down modeling method which uses assembly 

level control structures to drive child level geometry has proved valuable in maintaining 

these interfaces.  Creating robust parametric models like these, however, is very time 

consuming especially since there can be hundreds of features and thousands of 

mathematical expressions to create.  Even if combinations of low-level features, known 

as User-Defined Features (UDFs), are used, this process still involves inserting individual 

features into individual components and creating all of the inter-part associativities by 
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hand.  This thesis shows that programmatic operations designed for a specific product 

type can streamline the assembly and component-level design process much further 

because a single programmatic operation can create an unlimited number of low-level 

features, modify geometry in multiple components, create new components, establish 

inter-part expressions, and define inter-part geometry links.  Results from user testing 

show that a set of high-level programmatic operations can offer savings in time and effort 

of over 90% and can be general enough to support user-specified interface layouts and 

component cross sections while leaving the majority of the primary design decisions open 

to the engineer. 
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1 Introduction 

The parametric, feature-based functionality within computer aided design (CAD) 

applications has increased engineering efficiency dramatically [Anderl, 1995 and 

Pritchard, 1996].  Well developed parametric models can be reused to produce many 

similar designs, and can simplify the process of incorporating design changes [Black, 

1991 and Shaw, 1995].  In addition, associativity capabilities within modern CAD 

applications allow these parametric models to maintain relationships between features 

and components [Venkataraman, 2001] which extends the benefits to models of entire 

assemblies.  There are also programming and scripting tools available that enable 

advanced users to programmatically perform most of the same interactive functions.  

1.1 Problem statement 

Creating robust parametric models is very time consuming and “this level of skill 

can take years of training and experience to acquire” [Delap, 2006 and Hoffmann, 2001].  

Parametric models of assemblies are especially dificult and tedius to model because of 

the many inter-part relationships that must remain associative.  Producing complex part 

models is less tedious and time-consuming when higher level features – features that 

combine several low-level features – are employed rather than relying on standard low-

level features such as holes, ribs, and slots [Hoffmann, 1998 and Mosca, 2001].  Modern 
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CAD applications offer some high-level features for certain product types as well as User 

Defined Features (UDFs) which allow users to specify custom combinations of low-level 

features.  These approaches to modeling assemblies are still restricted however because 

they do not have any inter-part associativity or intelligence capabilities and can only 

combine a limited number of low-level features.  They require users to create the inter-

part expressions and geometry links by hand and do not allow the user to operate on 

multiple components at once or to create new components as part of the operation.   

1.2 Thesis objective 

It is my objective to show how the current modeling practices described above 

can be streamlined further through the use of product type-specific programmatic 

operations that would combine the benefits of UDFs and inter-part associativity and 

would function at a level much higher than inserting single features into individual 

components.  This thesis defines a programmatic operation as one that can create an 

unlimited number of low-level features, modify geometry in multiple components, create 

new components, establish inter-part expressions, and create inter-part geometry links.  

Since products of a similar type have similar primary and secondary features, 

programmatic operations can be written that can create most, if not all, of the CAD 

geometry necessary to define a product of a certain type.  This will in affect reduce the 

time consuming modeling element to the designer’s decision making time.   

The specific test case that will be used to demonstrate and validate this research is 

the interstage sub-assembly on solid motor rockets.  This particular assembly is a good 

candidate for this research because it is used repeatedly on a wide range of rockets and 
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because its geometry is relatively simple.  This research will therefore focus on the 

incorporation of rocket interstage-specific design operations into an application that will 

interoperate with Siemens NX 5.  The goal of this study is to develop a set of proof-of-

concept applications that will streamline the design of rocket assemblies and parts. The 

objectives of this thesis are: 

1. Create a framework of intelligent, high-level, programmatic operations that can be 

used to quickly design a wide range of components and assemblies.  

2. Implement this framework specifically for rocket interstage assemblies and 

components. 

3. Show that the rocket interstage implementation of this framework decreases the 

design time without impeding innovation.  

1.3 Delimitation of the problem 

The applications developed to prove the methodology will only provide a 

representative number of possible operations in the design of rocket interstages.  It is 

assumed that the joining method between parts will be bolted flanges.  Other joining 

methods and are used in designing interstages, but it is not necessary to provide an 

exhaustive collection of operations to demonstrate the method.  In addition, the 

implementation will be limited to a specific CAD application, NX 5, but the proposed 

methods will work with any application that has a sufficiently complete API library 

available to the developer.  The application is not intended for public release.  It is 

intended to prove the concept; however, if engineers and designers of rockets were to 
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apply their rules, heuristics and knowledge to this rocket interstage framework, 

significant time-savings would result. 

1.4 Document organization 

Now that the problem has been described and the research objectives have been 

defined, chapter two will provide a review of relevant literature upon which this research 

has been founded.  It will also describe similar research that has been conducted by 

others.  Chapter three will outline and describe the methodologies/architecture used and 

created to reach the thesis objectives and chapter four will provide details on how these 

methods and the architected framework were implemented for the specific case study.  

Chapter five will then present the results of the case study which predict time savings of 

more than 90% . Finally, chapter six will conclude that high-level, product type-specific 

operations can, in fact, streamline the design process without impeding innovation. 
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2 Literature Review 

A wide range of research has been performed in the field of computer aided 

design and especially in developing methods to streamline the product development 

process.  This chapter describes those contributions and how they have impacted this 

research.  The specific topics that will be discussed are: 

1. Parametric modeling 

2. High level features 

3. Product-specific design applications 

4. Associativity 

First, however, it is necessary to provide definitions and descriptions of key terms 

and concepts which are crucial to understanding computer aided design and this thesis. 

2.1 Definitions 

These definitions and descriptions of terms are obtained from [Zeid, 2005].  If the 

reader seeks further background and clarification on these concepts he or she should refer 

to said reference. 

Solid Model: A solid model is a “complete, valid, and unambiguous representation of an 

object.”  Complete means that any point in space can be classified as being inside, 

outside, or on the boundary of the object.  Valid means there are no dangling 
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edges or faces.  Unambiguous means there is one and only one interpretation of 

the model. 

Geometry and Topology:  The geometry of a solid model is the metric information of the 

model’s elements such as the lengths of lines, radii of arcs and depths of holes.  

Topology is the connectivity and associativity of the entities.  For example, Line 1 

shares a vertex with Line 2 and Arc 1.  A solid model must store both the 

geometry and topology of its entities to satisfy the completeness and unambiguity 

requirements. 

Set Theory: Set theory is the mathematical representation of solids.  A solid is defined by 

“a point set S in 3D Euclidean space (E3).”  The set S is the union of its interior 

(iS) and its boundary (bS).  The subset of all points on the exterior of S is called 

the complement of S (cS). 

Parametric: Parametric modeling refers to the ability to change the values associated 

with geometry which results in a new definition of the solid model. 

Variable, dimension, expression, equation: A variable is a name that can take on multiple 

values one at a time.  A dimension is a variable tied to specific geometry usually 

in a sketch.  An expression is a collection of variables and dimension names 

combined by mathematical operators.  An equation is a statement containing a 

dimension name or variable followed by an equals sign followed by an 

expression. 

Constraint: A topological condition between entities in a solid model.  For example, a 

coincidence constraint ensures that two entities have the same coordinates in 

space.  A perpendicular constraint makes the angle between two lines 90 degrees. 
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Parameter: Variables and dimensions are both referred to as parameters. 

Feature: According to Zeid a feature “is defined as a shape and an operation to build 

parts. The shape is a two-dimensional sketch…the operation is an activity that 

converts the sketch into a three-dimensional shape.  Sample operations include 

extrude, revolve, fillet, shell, chamfer, and sweep.”  This thesis uses a broader 

definition which includes the possibility of performing multiple operations on 

shapes as a single feature. 

Associativity:  Associativity means providing perpetual links between geometry, and 

expressions within multiple components of an assembly.     

2.2 Parametric modeling 

This thesis will provide superior methods of defining geometry and topology of 

product models.  The fundamental CAD methods discussed in section 2.2 form the 

backbone of this research and the foundation for much of the research that will be 

discussed in subsequent sections. 

Improvements to CAD have focused on reducing the number of user operations 

necessary to define the topology and geometry of products.  Parametric modeling and 

relating parameters with equations are fundamental methods of reducing operations 

[Lendermann, 2005].  Once a parametric model is created, products with similar topology 

can be modeled simply by updating the key driving parameter values. 

Feature based design is another “one of the fundamental design paradigms of 

CAD systems” [Hoffmann,1998].  It allows the user to define and modify the model at a 

higher level than the point and curve entities.  Even though feature-based parametric 
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modeling increases the efficiency of CAD design, complex parts may require hundreds of 

features and thousands of parameters and so more advanced methods have been 

developed that modify geometry at an even higher level [Elliott, 2004]. 

2.3 High level features 

After the groundwork for feature based modeling was laid, it was determined that 

“to devise a universal set of features would lead to a potentially unmanageable number of 

features that a CAD system might be asked to provide” [Hoffmann, 1998].  Because of 

this, several research teams set out to “provide CAD systems with a basic mechanism to 

define features that fit the end user needs” [Hoffmann, 1998; Bidarra, 1998; Shaw, 1994; 

Tang, 2001].  These are referred to as User-Defined Features (UDFs).  They work by 

allowing the user to define a set of standard, low level features that will be grouped 

together.  For example, a sketch, an extrusion, and a corner blend feature can be grouped 

into a UDF called a boss.  UDFs also allow the designer to limit which expressions will 

be available to the end user to minimize the number of inputs required and to prevent 

important parametric relations from being altered.   

Many designers have achieved significant time savings by using UDFs, such as 

Bruno Lamarche and Louis Rivest [2007] who reported an 86% time improvement.  The 

UDF they created added lightening pockets to an aircraft skin panel between any given 

set of stringers and frames.   

Several CAD vendors also offer higher level design features as standard features.  

In the 2006 release of SolidWorks, Dassault Systemes “introduced a number of features 

designed to assist in building plastic part features” [Jankowski, 2005]. Among the new 
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features were a “Mounting Boss”, “Snap Hook”, and a “Snap Hook Groove.”  Most CAD 

vendors also provide optional features for sheet metal design and wiring design including 

Siemens’ NX, Dassault Systemes’ CATIA, and Parametric Technology Corporation’s 

Pro/Engineer. 

The disadvantages of the current high-level features are that they cannot create the 

interpart associativities in an assembly, and can only combine a limited number of low-

level features.  This thesis builds upon the discussed methods of using high-level sets of 

features to minimize the effort required to define the model.  However, the programmatic 

operations of this thesis are able to operate on a much higher level than inserting 

individual features into single components.  Each operation can create large sets of 

features in multiple parts as well as the inter-part expressions and geometry links needed 

to maintain associativity.  The proposed method establishes a strategic set of high-level 

feature operations that are tailored to meet the needs of a specific product type.     

2.4 Product specific design applications 

Other researchers have also found it useful to develop methods that are tailored to 

a certain product type.   

Huh and Kim [Huh, 1991] developed the “RIBBER” application for adding 

supplementary features like ribs and bosses to plastic injection molded parts.  They used 

Pro/Engineer as the geometric modeler and RIBBER synthesized the necessary 

parameters for the supplementary features based on manufacturing, molding, and strength 

information. 
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Ong and Lee [Ong, 1995] developed CADFEED, a CAD-based applications to 

automate the design of the feed system for plastic injection molds.  Parts were designed 

using a features database of common plastic injection molded part bases and “add-on” 

features then the application found appropriate locations and sizes for various types of 

gates, sprues and runners. 

 Another product specific design application was developed by Delap, Hogge, and 

Jensen [Delap, 2006].  Using the NX application programming interface (API) they 

developed an application for preliminary design and optimization of jet engine flow 

paths.  They created parametric models programmatically and interfaced the CAD 

geometry with simple analysis codes and optimization routines.   

In a joint project between the Institute of Product Engineering at the University of 

Duisburg-Essen and Siemens, it was discovered that the design of shafts and impellers of 

compressors was effectively automated by integrating knowledge directly into the 

definition of UDFs using NX’s knowledge based engineering (KBE) software 

(Knowledge Fusion).  By using these “modular” knowledgeable UDFs, “one can 

renounce an ‘omniscient’ KBE application … that would lead to a highly component 

specific application” [Danjou, 2008].  The definition of the components is stored in data 

files and the KBE application “imports the data file, analyzes the content and distributes 

the input parameters to all relevant UDFs” [Danjou, 2008].  This thesis also applies the 

idea of embedding intelligence into the feature operations to automate much of the design 

process while remaining somewhat flexible.  
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2.5 Associativity 

Another area of research that has contributed to CAD’s overall efficiency is the 

idea of associativity.  When a design change is made in one part of the assembly, related 

components can also update automatically through the use of inter-part expressions or 

linked geometry.  This capability within CAD has led to increased time savings due to the 

reduction of operations needed to update the design.  It has also led to additional 

robustness in parametric modeling because once the associativity is established, mating 

errors are significantly reduced [Emch, 2002].  There is still ample room for 

improvement, however, because learning to create these “complex parametric models that 

are very robust…can take years of training and experience to acquire” [Delap, 2006].  

Lendermann [2005] explains that “associativity requires a clearly defined data flow.  The 

more associativities exist in a geometrical model, the more vulnerable it gets to circular 

references…”  These difficulties associated with creating associative parametric models 

have been addressed in several ways including the method of top-down modeling, and the 

strategy of using custom defined assembly features to handle the associative aspects of 

modeling.   

2.5.1 Top-Down modeling method 

Lendermann [2005] explains that the problem of circular references mentioned 

previously “can be solved by hierarchical structures …a superior component could 

contain the information of the [sub-components].”  This approach is known as the top-

down modeling method.  It is very useful for maintaining associativity in an assembly as 

has been noted in numerous studies. 
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Francesco Mosca [2001] used this approach to define “control structures” for gear 

box design and project management.  “Such a way to manage a project (critical data 

organized in a control structure),” he said, “leads to a simple modifying of the product or 

to a redesign without remodeling the geometry but regenerating it.”     

Aircraft body design was also significantly improved using the top-down 

approach [Emch, 2002].  Emch explains that “another function of the Control Structure is 

the definition of interfaces between subsystems and between major elements within the 

subsystems themselves” and that “the advantage to the design process is the ability to 

greatly shorten development cycles while attaining aggressive performance goals.” 

The top-down modeling method and its use in maintaining correct interface 

definitions between parts is a fundamental strategy employed by this thesis.  This thesis 

also presents methods for automating the generation of assembly control structures and 

defining the geometry links between the control structure and the component level parts.     

2.5.2 Assembly features 

Ma [2007] introduced associative assembly features (AAF) and a sub-category of 

AAFs called assembly design features as a higher level method of doing assembly level 

associative design.  An example of such an assembly design feature is a guide pin pattern 

on a plastic injection mould base.  The feature resides in the top level assembly file and 

includes a parametric expression-based representation of the pattern that “contains rules 

to determine the number of pins required for a specific mould size.”  The sub-

components in the assembly inherit these parameters and “such links are retrieved, 

managed and saved via a set of feature object modification methods” which are part of 

the “feature manager.”  The user selects the desired type and size of mold assembly from 
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a graphical user interface (GUI) and “an instance of the assembly is inserted into the 

design model.”   

The author’s method will similarly create linked expressions and linked geometry 

between parts in the assembly.  The superiority of the author’s method, however, is that 

there will not be pre-determined assembly configurations loaded from a library.  Instead, 

the user defines custom assembly layouts through a GUI and the application creates the 

configurations automatically. 
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3 Methods 

The methods discussed in this chapter represent a set of automated steps that can 

be used to design a specific type of product.  The objective of this thesis is to prove that 

such a set of programmatic operations can reduce the time and expertise required for 

defining the geometry, topology, and associativity of assemblies.  Although these 

methods are specifically chosen for their applicability to a specific product, they will be 

presented with as much generality as possible to enable their extension into other product 

types.  These methods were developed using the NX Open API in C++ and this thesis 

may use language specific to that programming and modeling environment; however, the 

content of the methods should be general enough to apply to any similarly capable 

environment. 

3.1 Overall method for design automation 

The steps used in automating the design of assemblies and components employ 

the techniques discussed in Chapter 2, especially the control structure-based top down 

method.  The steps can be grouped into three key operations.   

Operation 1: Define the control structure and part ownership and create the 

geometric links between the parents and children for the primary design features. 
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Operation 2: Define the cross sections of children level parts, make them into 

solids, and add detail features such as chamfers, blend radii, and fastener holes. 

Operation 3: Add secondary design features such as access doors. 

For the remainder of this chapter and in subsequent chapters, A will represent an 

assembly-type part (a parent to at least one other part) and C will represent a component 

type part (one having no children).  The superscript of A or C will represent the 

hierarchical level of the part and the subscript will represent its position relative to its 

sibling parts, e.g. A2
1 is the first child of its parent and is a second level assembly, and C3

2 

is the second child of it’s parent and is a third level component.  No subscript will be 

used when referring to the collection of all parts on a certain hierarchical level.   This is 

illustrated in Figure 3-1. 

 

 

Figure 3-1: Assembly part notation 

In addition, let ( )Ο
Sk

 represent an operation on sketch geometry.  The notation 

from set theory for boundaries (bS) will be modified by a subscript 2 or 3 to distinguish 

between two-dimensional boundaries b2 (sketch geometry) and three-dimensional 

boundaries b3 (faces and edges of the solid).  Figure 3-2 illustrates these terms as well as 

other key terms that will be introduced in this chapter. b2C2 represents the two 

A1 

A2
1 C2

2 C2
3 

C3
1 C3

2 
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dimensional boundary of a component.  b3C2 represents the three dimensional boundary 

of a component.  Iij is a unit of the control structure which represents the interface 

between components i and j.  The clearance between components is denoted by ε and the 

chain link symbol denotes the sketch constraints between Iij and b2C2.  A1 is the top level 

assembly that contains the control structure. 

   

 

Figure 3-2: Key terms   

3.2 Operation 1: control structure, part ownership, geometric links 

The first operation helps the designer define the overall layout of the entire 

assembly and automatically creates the associative links from the top level control 

structure owned by A1 to its children (A2 and C2).  The control structure can be 
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represented mathematically as the set of all points at which its children’s boundaries 

(b2C2) are located within a given clearance of each other (ε).  Let Iij denote the 

intersection between components C2
i and C2

j. 

I
ε

2
2

2
2 jiij CbCbI =          (3-1) 

Then A1 is the sum of all intersections between its n children.  

∑∑
−

= +=

=
1

1 1

1
n

i

n

ij
ijIA           (3-2) 

See Figure 3-2 for illustrations of Iij, b2C2, ε, and A1.   

When modeling assemblies, a designer will start with a hand drawing of the 

overall layout and will therefore know by inspection, what the control structure needs to 

look like.  The automated method serves as a tool to quickly go from a hand drawn 

assembly configuration to fully defined models with associativity.      

3.2.1 Application architecture 

The control structure is defined through a framework of C++ class objects (See 

Figure 3-3 on page 19) which are instantiated based on user inputs from a graphical user 

interface (GUI).  The Interface Object class contains all the data needed to define the 

geometry of one unit in the interface control structure (Iij).  It contains the member 

function ( )ij
Sk

IΟ  to create the Sketch control geometry, and the member function ( )ij

f

Sk
IΟ  

to create the fastener control geometry based, on the member variables.  It also contains 

the member function ))(()( 212
iij

Wl
iij CAICI →=Ο  to Wave link a unit (Iij) of the control 
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structure from A1 into a child component C2
i.  The member function ( ))( 22

2 iiji
Sk

CICb =Ο  

constrains the sketch geometry of the child part (b2C2
i) to its wave linked geometry 

(Iij(C2
i)).  The Interface Derived Part class contains a collection of interface objects as 

well as the positions on each interface.  It also has a function that calls each of its 

interface objects’ functions. 

       

 

Figure 3-3: C++ class architecture 

3.2.2 Application procedure 

After the data is collected from the GUI, the application automatically performs 

the following steps associated with operation 1. 

1. Create part files for A1, A2 , and C2.  
2. Create control sketch in A1  

Interface Object Class (Iij) 
- Member variables 
- Member functions 

o MakeSketchControlGeometry(Member variables) ( )ij
Sk

IΟ  

o MakeFastenerControlGeometry(Member variables) ( )ij

f

Sk
IΟ  

o LinkChildToParent(Child) )( 2
iij

Wl
CI →Ο  

o MakeChildGeometry(Child Position) ( ))()( 21
iijij

Sk
CIAI →Ο  

Interface Derived Part Class 
- Member variables 

o MyInterfaceObjects 
o MyInterfacePositions 

- Member functions 
o SketchMyInterfaces(MyInterfaceObjects, MyInterfacePositions) 

C++Architecture 
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a. Create and open sketch feature 
b. For each interface object: call MakeControlGeometry(Data) 
c. Close sketch feature 

3. For each interface object: call MakeFastenerControlGeometry(Data)  
4. For each Interface Derived Part Object 

d. For each Interface Object in collection: call LinkChildToParent   
e. Create and open sketch feature 
f. Call SketchMyInterfaces(MyInterfaceObjects, MyInterfacePositions) 
g. Close sketch feature 

 

At this point each part will have the geometric links associated with the control 

structure and will have sketch geometry that is constrained to the control structure.  A 

sample part sketch would look like that in Figure 3-4 where the blue lines represent the 

wave linked control structures )( 2
212 CI  and )( 2

223 CI , the orange lines represent the sketch 

geometry (a subset of 2
22Cb ), and the red points indicate constraints between the sketch 

geometry and the linked control structures (Red chain links in Figure 3-2).  The 

component bodies are shown in gray for reference. 

 

 

Figure 3-4: Completion of operation 1 showing the sketch of one part 
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3.2.3 Scope 

This framework is general enough so that any interface type can be created by 

defining a class that inherits from the Interface Object Class.  Possible interface types that 

may be created using this framework include a manacle joint, a weldment, or riveted 

joints.  For this thesis, one interface type has been implemented that represents a bolted 

flange joint.   

3.3    Operation 2: Cross sections, solids, detail features 

The primary steps associated with Operation 2 are 

1. Complete the part cross section sketches 

2. Create solids from sketches 

3. Apply blends and chamfers to edges 

4. Create fastener hole features and patterns 

3.3.1 Step 1: Part cross sections 

The first step of Operation 2, completing the part cross section sketches, is 

performed interactively by the designer.  This is where the most variability exists in the 

design and since interactive sketching is fairly easy and fast, it is more advantageous to 

not hard code the creation of individual part sketches.  The use of macros, or a library of 

applications to generate common sketches would accelerate this step, but will be left for 

future work.  It should also be noted that if this step were automated, Operation 2 could 

effectively be combined into Operation 1.  This step completes the definition of 2
2Cb  

which is illustrated in Figure 3-5. 
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Figure 3-5: Completion of operation 2 step 1 

3.3.2 Step 2: Solids 

It is programmatically trivial to create the solidifying feature from the cross 

section sketches.  As long as the sketch is named according to a pre-determined 

convention it can be retrieved and either extruded or revolved.  Certain interface types 

may also contain parameters needed to perform this step such as an extrusion distance or 

revolve angle and would therefore create the necessary variables as part of Operation 1.  

In that case, the expressions would be named according to a convention and the 

application for Operation 2 would reference the established expression name while 

creating the feature.     

3.3.3 Step 3: Blends and chamfers 

The method for automating the creation of blends and chamfers is also based on 

the interface types associated with the part.  Blends and chamfers are commonly used to 

facilitate the assembly of mating parts and are applied to easily predicted edges especially 

when the interface type is known.  The method used in this step of Operation 2 queries 
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the edges of each part and determines which edges intersect )( 2
iij CI . Then based on the 

rules for each interface type, blends and chamfers are applied.  The rules for whether a 

chamfer or a blend would be inserted are based on the specific vertex of the interface and 

could reference either the expressions created by the interface object functions or values 

retrieved from a GUI.  The specific rules for the interface type implemented by this thesis 

will be discussed in more detail in chapter 4, but here is an outline of the procedure.  

Figure 3-6 illustrates the models after Step 3 has been completed.  The yellow points 

denote the key vertices to which chamfers or blends have been applied. 

For all parts 12 ACi ∈   (0 ≤ i ≤ n) 
For all edges )( 2

ib Ce ∈  (0 ≤ b ≤ l) 
For all key vertices )( 2

, ikija CIv ∈   (0 ≤ a ≤ m) 
Calculate minimum distance dmin between va and eb 

If dmin < tolerance 
Create Chamfer or Blend 
Stop looping vertices 
 

 

 

Figure 3-6: Operation 2 step 3 complete 
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3.3.4 Step 4: Fastener detail features 

The method for adding fastener hole features is very similar to the blends and 

chamfers method, except instead of cycling through the vertices associated with the 

interface control geometry, it cycles through the fastener control geometry for each 

interface object.  Again, the hole features and pattern features reference the expressions 

which were created by the Interface Object class member functions (Figure 3-3).  The 

algorithm goes as follows (See Figure 3-7 for results): 

For all parts 12 ACi ∈   (0 ≤ i ≤ n) 
For all center lines )( 2

, ikija CIcL ∈   (0 ≤ a ≤ m) 
Insert Hole Feature  
Name Hole Feature according to convention 

For all features )( 2
ib Cf ∈   (0 ≤ b ≤ l) 

If feature type and name match convention for an interface hole  
Create hole pattern 

 

 

Figure 3-7: Operation 2 step 4 complete 
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3.4 Operation 3: Doors, door frames, and interstage alterations 

Although adding doors and door frames has fewer applications in other product 

types, the methods presented are general enough to work on an arbitrary input surface, 

and an arbitrary door shape and therefore are not restricted to cylindrical and conical 

products or rectangular doors.  This operation includes a method for creating and altering 

the component bodies, as well as a method for creating the fastener holes needed to 

assemble the components.  If multiple doors are needed, this operation can be executed as 

many times as required.  

3.4.1 Operation 3a: Component bodies 

When inserting a door into a component, it is often required to stiffen the area 

surrounding the cutout.  Step 1 of Operation 3a will outline the procedure for stiffening 

the interstage cutout.  Step 2 will outline the procedure for modeling the door frame and 

Step 3 will present the method for modeling the door. 

Step 1: Altering the interstage 

There are two inputs required for this operation.  The first is the inner most 

surface of the part body to which the door and frame will be added.  We will call this 

SIML for “inner mold line”.   The second input is a sketch of the cutout region.  The sketch 

must be created on a plane which is tangent to SIML at the center point of the cutout and 

must contain a single closed loop with no convex curvature.  The input sketch will be 

called b2SCUT.  The inputs are illustrated in Figure 3-8. 
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Figure 3-8: Inputs required for operation 3 

First, let )( 2 CUT
Ext

SbΟ be the symmetric Extrusion of b2SCUT normal to its sketch 

plane and let ⎟
⎠
⎞

⎜
⎝
⎛= ΟΟ )( 2 CUT

ExtBl
CUT SbS  be the result of a Blending operation on 

)( 2 CUT
Ext

SbΟ  which ensures a set of tangent continuous surfaces normal to SIML as 

illustrated in Figure 3-9.    

 

 

Figure 3-9: Blended extrusion of b2SCUT 
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Let OS be a set of surfaces offset from a set of surfaces S.  The next step in the 

procedure is to generate offsets from SIML and SCUT for each position on the cross section 

of the thickening body (BTH).  Figure 3-10 is an example of what a thickening cross 

section might look like and where offset surfaces would be needed.  The grey rectangle 

represents the interstage body’s cross section before the cutout and thickening.  The 

dotted lines are the input surfaces and the solid black lines represent the new cross 

section around the cutout region.  The hatched grey area would be trimmed from the 

current interstage body as will be discussed later.  Figure 3-11 shows what the CAD 

model would look like after applying the offsets. 

 

 

Figure 3-10: Stiffening cross section with offset surface markers 

The segments of the thickening cross section which are either parallel or 

perpendicular to SIML at the cutout’s midplane can be produced by the operation 

)( ...1 n
Tr

SS →Ο  which denotes a surface S Trimmed by n surfaces S1 through Sn.  For 

example, the outer most surface represented by the top horizontal line in Figure 3-10 

would be produced by the operation ),( 322 CUTCUTIML
Tr

OOO →Ο .  The result of each 

trimming operation is a subset of b3BTH, the 3-dimensional boundary of the thickening 

body (see Equation 3-3).  
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Figure 3-11: Input surfaces and offset surfaces 

THCUTCUTIML
Tr

BbOOO
kji 3),( ⊆→Ο       (3-3) 

The remaining surfaces of b3BTH are produced by sweeping operations 

),,( 21 ggc
Swp
Ο  where a curve THBbc 2∈  is swept along closed guide curves represented 

by CUTIMLi OOg ∩= .  Figure 3-12 shows the result of this operation as well as the curve c 

and guide curves g1 and g2.  It also shows the outermost trimmed surface mentioned as an 

example above. 
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Figure 3-12: A swept surface and a trimmed surface on b3BTH 

Thus  

∑ Ο∑ Ο ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∪⎟
⎠
⎞

⎜
⎝
⎛ →= ),,(),( 213 ggcSSSBb

Swp
kji

Tr
TH     (3-4) 

and Bth can be created by sewing together its boundary surfaces b3BTH. 

 The final steps in altering the interstage part (equations 3-5 and 3-6) are trimming 

the main interstage body (BINT) to remove the portions represented by grey hatching in 

Figure 3-10 and then uniting BINT and Bth.  The final cross section can be seen in Figure 

3-13. 

∏ →=
Tr

THINTINT BbBB )( 3        (3-5) 

THINTINT BBB ∪=         (3-6) 
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Figure 3-13: Final interstage cross section around door cutout 

Step 2: Create door frame 

First, add a blank part file C3
2 (the frame) to A2 (the interstage sub-assembly) and 

wave link SIML, SCUT, and OCUT1 from C3
1 (the interstage) to C3

2.  We will refer to these 

local copies as 

),,(,, 3
211 COSSLOLSLS CUTCUTIML

Wl
CUTCUTIML →=Ο     (3-7) 

Next, create offsets from LSIML and LScut to maintain clearances. 

CUTIML LSLSCUTIML OOCLCL ,, =        (3-8) 

Now create additional offset surfaces (O1..n) from CLIML and CLCUT as needed to 

bound the door frame’s body (BFr) and trim CLIML , CLCUT and O1..n to produce b3BFr. 

),(...1 CUTIML CLCLn OO =         (3-9) 

∑Ο= ),,( ...13 nCUTIML
Tr

Fr OCLCLBb       (3-10) 

 BFr can now be created by sewing its bounding surfaces b3BFr. 

Step 3: Create door 

The door is made by following the same process for creating the door frame 

except wave linked surfaces will be extracted from both the interstage part and/or the 

door frame part depending on the frame’s cross section. 
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Once the bodies have been modeled, the expressions should be created to dictate 

the flange lengths and cutout sizes which will all be controlled by the offset distances.  

The wave linked geometry will ensure that the interfaces mate correctly. 

3.4.2 Operation 3b: Door fastener holes 

There are two sets of fastener holes for each door on the interstage.  One set to 

fasten the frame to the interstage and one set to fasten the door to the frame.  For each of 

these sets, the following procedure will be followed.  Inputs such as hole sizes and 

distances from edges will be retrieved using either a GUI or existing expressions created 

by Operation 3a. 

First, create a set of offset curves (co) from the edge (e) of the mating flange on 

the outer flange face (Sfl). 

),( fl
o

o Sec Ο=          (3-11) 

Next, create evenly spaced point features (
npnt1pnt f...f ) on each segment of co. 

Equations 3-12 and 3-13 calculate the parameter value (u) of the curve at which to 

place point i given n points on the curve.  Equation 3-12 places points at the curve 

endpoints, and Equation 3-13 excludes the endpoints. 

)0(,
1

ni
n

iui <≤
−

=         (3-12) 

)0(,
1
1 ni

n
iui <≤
+
+

=         (3-13) 

Now, create a hole feature that references each of the n points (0…n) on each of 

the m curves (0…m). 
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)),((
1

0

1

0
∑∑Ο
−

=

−

=

=
m

i

n

j
pnti

Holes
Holes j

fcf        (3-14) 

To create mating hole features on the second part, first wave link each point to the second 

part.  The local copy of the jth point on the ith curve is represented by  

),(
jij pnti

Wl
pnt fclocalf Ο= .       (3-15) 

Next, insert a projection feature (fproj) of all of the local points onto the outer flange 

surface (Sfl) with the operation  

)),((
1

0

1

0
∑∑Ο
−

=

−

=

=
m

i

n

j
flpnt

P
proj Slocalff

ij
.      (3-16) 

Finally, create a hole feature of the projection feature points which uses inter-part 

expressions to match the hole parameters. 

)( proj
Holes

Holes flocalf Ο=         (3-17)  
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4 Implementation 

This chapter gives the details involved in implementing the methods described in 

Chapter 3.  The user can execute each of the operations from Chapter 3 by clicking on 

custom buttons in the NX environment as illustrated in Figure 4-1.  Operation 1 is named 

Interface Manager.  Operation 2 is called Detail Features.  Operation 3a is called Insert 

Door and Operation 3b is called Door Fasteners. 

 

 

Figure 4-1: Custom buttons for executing automated operations 

4.1 Operation 1: Interface manager 

This thesis demonstrates the implementation of one type of interface, which 

represents a cylindrical or conical bolted flange joint.  There are three key class objects 

which store the necessary data and perform the required CAD operations: the 

JointObject Class, the ConicalJointObject Class, and the 

JointDerivedPart Class.  There is also a set of classes for the GUI through which 

the user instantiates and edits the three key class objects. 
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4.1.1 Joint object class 

Below is a condensed version of the class definition file.   The important member 

functions member variables will be described following the example code. 

 

 
class JointObject{ 
 
public: 
 //constructors 
 JointObject(); 
 JointObject(std::string Name,  //Joint Name 
   int nRows,    //Number of Fastener Rows 
   double D,   //Fastener Diameter 
   int N,   //Number of Fasteners 
   double xOut,  //Axial Position 
   double rOut,   //Radial Position 
   std::string matIn,  //Inner part Material 
   std::string matOut,  //Outer part Material 
   std::string dir,  //Flange is Fwd or Aft 
   std::string orient); //Boss is Inner or Outer 
 
 //destructor 
 ~JointObject(); 
 

 

The constructor of the class takes in the necessary inputs to define the geometry 

of the interface.  The comments beside each input describe their meaning.  Name is used 

to distinguish between other interfaces in the assembly.  The length of the flange is a 

function of nRows, D, N, matIn, and matOut.  The position of the interface is 

determined by xOut, and rOut.  The orientation is determined by dir, and orient.  

   

 
 //accessor functions (OMITTED) 
 //setter functions (OMITTED) 
 
 //member functions 
 virtual void CalculateGeometry(); 
 virtual void MakeExpressions(); 
 virtual void MakeGeometry(); 
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void MakeHoleControls(); 
  void RevolveSheet(); 
  void MakeDatumPlane(int Row); 
  void HoleSketch(int Row); 
  
 virtual void ReadMe(std::vector<std::string> &tokens, int &i); 
 virtual void WriteMe(ofstream &fout); 
 std::string GetBitmapPath(); 
 

enum PartPosition{INNER,OUTER};//names of possible part positions 
void SketchPart(PartPosition pos); 
 

protected: 
 //member variables (OMITTED) 
 //calculated values (OMITTED) 
 //geometric objects (OMITTED) 
}; 

The first group of member functions are responsible for creating the joint 

geometry in the top level assembly sketch. CalculateGeometry uses the member 

variables to determine the positions of the points and lines in the sketch including the 

location of the fastener holes.  MakeExpressions creates the expressions in the part 

that the user can use to modify the joint parameters.  The expressions are also dependent 

on the member variables and include conditional statements so that if for example, the 

part material changes, the flange length will be recalculated appropriately.  

MakeGeometry creates the actual lines, dimensions and constraints in the sketch as 

seen in Figure 4-2.   

 

 

Figure 4-2: Control sketch displaying dimensions and expressions for a JointObject J0. 



www.manaraa.com

 36

 
void MakeHoleControls(); 

  void RevolveSheet(); 
  void MakeDatumPlane(int Row); 
  void HoleSketch(int Row); 

 

The second group of member functions is responsible for creating the additional 

geometry used to control the location and size of the fastener holes.  MakeHoleControls 

works as follows. 

 

void JointObject::MakeHoleControls(){ 
 MakeDatumPlane(1); 
 HoleSketch(1); 
 if(this->m_nRows ==2) 
 { 
  RevolveSheet(); 
  MakeDatumPlane(2); 
  HoleSketch(2); 
 }  
}  

 

MakeDatumPlane creates the plane for the hole sketch.  If  the input is 1, it 

creates the plane at the midpoint of the row 1 fastener location line (dimensioned as 

J0_xeOut in Figure 4-2).  If the input is 2, it creates the plane at the midpoint of the edge 

of the sheet which is created by the RevolveSheet function.  This function revolves 

the row 2 fastener location line (dimensioned as J0_xeIn in Figure 4-2) by half of the 

angle between holes in the first row  ( θ = 180 / N ) .  Finally, HoleSketch creates a circle 

of size D and constrains it to be coincident with the same edge used to create the datum 

plane.  Once completed, the control geometry will look like Figure 4-3. 
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Figure 4-3: JointObject control sketch and hole control geometry 

 
virtual void ReadMe(std::vector<std::string> &tokens, int &i); 

 virtual void WriteMe(ofstream &fout); 
 std::string GetBitmapPath(); 
 

 

The third group of member functions are used in the GUI.  ReadMe parses an 

input file and sets the member variables associated with the JointObject.  WriteMe 

writes the member variables to an output file.  GetBitmapPath returns the path of an 

image which illustrates the direction and orientation of the JointObject for reference 

in the GUI. 

 

enum PartPosition{INNER,OUTER};//names of possible part positions 
void SketchPart(PartPosition pos); 
 
 

The final member function, SketchPart, is used to create geometry in the cross 

section sketch  of the child part and constrain it to the control structure.  The 

PartPosition enumerator is used to distinguish the placement of the part geometry.  
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For parts in the INNER position, one line is created coincident with the both the start and 

end points of the flange line (dimensioned as J0_rIn in Figure 4-2) and another line is 

created coincident with the vertex between the boss and the flange (J0_xIn,J0_rIn in 

Figure 4-2) and parallel to the vertical boss line.  For parts in the OUTER position, two 

lines are created coincident with the boss/flange vertex (J0_xOut,J0_rOut in Figure 4-2); 

one is parallel to the boss line (J0_xOut) and the other is parallel to the flange line 

(J0_rOut).   

4.1.2 Conical joint object class 

The ConicalJointObject class inherits from the JointObject class 

and therefore makes use of many of the JointObject member functions.  The 

member functions declared as virtual in the JointObject class are overloaded in 

the ConicalJointObject class, and have the same functionality.  The other key 

difference in the ConicalJointObject class is that it contains an additional input 

called Ang which designates the angle between the flange and the horizontal axis.  The 

class definition is below and Figure 4-4 illustrates the control structure it creates. 

 

class ConicalJointObject : public JointObject{ 
 
public: 
 //constructor 
 ConicalJointObject(); 
 ConicalJointObject(std::string Name, 
    int nRows,  
    double D, 
    int N, 
    double xOut, 
    double rOut, 
    double Ang,    //Angle between flange and axis 
    std::string matIn, 
    std::string matOut,  
    std::string dir, 
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    std::string orient); 
  
 //destructor 
 ~ConicalJointObject(); 
 
 //overloaded member functions 
 void CalculateGeometry(); 
 void MakeExpressions(); 
 void MakeGeometry(); 
 void WriteMe(ofstream &fout); 
 void ReadMe(std::vector<std::string> &tokens,int &i); 
 
 
private: 
 //unique input value 
 double m_Ang; 
}; 

 

 

Figure 4-4: ConicalJointObject control sketch and hole control geometry 

Table 4-1 illustrates the part positions and orientations of both the 

JointObject and ConicalJointObject control structures. 
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Table 4-1: Joint orientations and part positions 

 JointObject ConicalJointObject 

 Flange Forward Flange Aft Flange Forward Flange Aft 

Boss 
Outer  

    

Boss 
Inner 

    
 

4.1.3 Joint derived part class 

The JointDerivedPart class contains the information for each component in 

the assembly and the member functions to begin defining the part geometry and topology 

and to create the associative links to the top level assembly part.  The class definition file 

is shown below with descriptions. 

 

class JointDerivedPart{ 
 friend class InterfaceManagerUI; 
public: 
 //constructors 
 JointDerivedPart(void); 
 JointDerivedPart(std::string Name, 
  std::vector<JointObject*> Joints, 
  std::vector<JointObject::PartPosition> Positions, 
  std::string Mat, 
  std::string subAssmName = ""); 

//destructor 
 ~JointDerivedPart(void); 

 

The input variable, Name, is the actual component name in the assembly.  

Joints is the collection of JointObjects associate with the part.  Positions is 

the collection of enumerators to define the location of the part on the interface.  Mat is 

the material of the part, and subAssmName is the name of the sub-assembly which 
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contains the part if it is not a direct child of the top level assembly. The default value of 

subAssmName is set to the null string to designate that the part does not belong to a 

sub-assembly.  

 

//accessor functions (OMITTED) 
 //member functions 
 void CreatePart(); 

void MakeWaveLinks(); 
  void WaveLink(JointObject* Joint); 
 void SketchCrossSection(); 
 void PassMaterialToJoints(); 
 void WriteMe(ofstream &fout); 
  
private: 

//member variables (OMITTED) 
}; 

 

The member function CreatePart creates the actual part file (and sub-

assembly part file if applicable) and adds it to either the sub-assembly or the top level 

assembly.  MakeWaveLinks loops through the Joints and calls WaveLink for each 

one to create the associative link features.  Since each line in the control structure is 

named using the Joint name as a prefix, the WaveLink function can retrieve them by 

name.  Note however, that NX stores the names of objects in upper case, so the joint 

name must be converted to upper case whenever the object is instantiated.     

SketchCrossSection loops through the joints and calls the SketchPart function 

for each Joint with the appropriate PartPosition as shown below.  

 

void JointDerivedPart::SketchCrossSection(){ 
 . . . create the sketch, name it “CS” . . . 
 for(int i=0;i<m_Joints.size();i++) 
 { 
  m_Joints[i]->SketchPart(m_Positions[i]); 
 } 
 //update and close control sketch 
}     
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In order for subsequent operations to work, they need to know which 

JointObjects are associated with each part and what type of interfaces they are.  This 

has been accomplished by creating attributes in the part file.  When CreatePart is 

called, it adds an attribute to the part file named “Joints” with the value “0”.  The 

WaveLink function creates the attributes “JointXName” and “JointXType” where X is 

incremented each time the function is called.  This portion of the WaveLink code is 

shown below. 

 

void JointDerivedPart::WaveLink(JointObject * Joint){ 
 ... 

//get the “JOINTS” string attribute and convert it to an integer 
NXString numJoints = workPart->GetStringAttribute("JOINTS"); 
int n = atoi(numJoints.GetText()); 
//increment it 
n++;  
//create the attribute “JOINTX = name of joint” 
workPart->SetAttribute("JOINT"+stringify(n), Joint->getName()); 
//set the “JOINTS” attribute to the incremented value 
workPart->SetAttribute("JOINTS",stringify(n)); 

  
   //create the string variable for the joint type by concatenating     

//abbreviations for the type,direction, and orientation 
std::string JointType = Joint->IsConical ? "CON" : "CYL"; 
JointType += Joint->getDir() == "FLANGE_FORWARD" ? "FWD" : "AFT"; 
JointType += Joint->getOrient() == "BOSS_OUTER" ? "OUT" : "INN"; 
//create the “JOINTX_TYPE = type” attribute 
workPart->SetAttribute("JOINT"+stringify(n)+"_TYPE",JointType); 
... 

} 
 

PassMaterialToJoints sets the material variable for each Joint and calls 

its CalculateGeometry function.  WriteMe, as in the JointObjectClass, 

writes the output file for the object.   
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4.1.4 GUI 

The Interface Manager is the GUI that helps the user quickly create instances of 

the classes just described and then also uses their member functions to execute the steps 

of Operation 1 discussed in Chapter 3.  Figure 4-5 illustrates the GUI which was designed 

using the NX UIStyler tool.  

 

 

Figure 4-5: Interface manager GUI 

There are two collapsible sections in the Interface Manager.  The first section is 

called Joint Definitions.  The Joints List contains the name of each of the 

JointObjects.  Next to the Joints List is the Joint Name box and the Add and Delete 
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Buttons.  Below them, are the radio boxes and input boxes to define all of the necessary 

inputs for the JointObjects.  At the bottom of the first section is the illustration of 

the current JointObject orientation. 

The second section of the Interface Manager is the Part Definition section.  It 

contains a similar list box for the Parts and also a multi-selection box where the user can 

specify which joints are associated with each part.  If the part needs to be in a sub-

assembly, the user can check the box below the lists and give the sub-assembly a name.  

The radio boxes below the check box are where the user designates the part position on 

the interface and the part material.  Again, illustrations of the selected joints are displayed 

at the bottom. 

The class definition of the GUI is shown below  

class InterfaceManagerUI{ 
public: 
     //NX class methods (OMITTED) 

//my class methods 
 void CreateAssemblyAndControlStructure(); 
 void ResetJointImage(); 
 void WriteOutputFile(); 
    //------------------ UIStyler Callback Prototypes ---------------// 

(PROTOTYPE VARIABLE LISTS HAVE BEEN OMMITED FOR BEVITY) 
    NXOpen::UIStyler::DialogState MakeMe_cb(…); 
    NXOpen::UIStyler::DialogState action_AddJoint_act_cb(…); 
    NXOpen::UIStyler::DialogState action_Delete_act_cb(…); 
    NXOpen::UIStyler::DialogState ListActivated(…); 
    NXOpen::UIStyler::DialogState RadioChangeDir(…); 
    NXOpen::UIStyler::DialogState RadioChangeOr(…); 
    NXOpen::UIStyler::DialogState RadioChangeType(…); 
    NXOpen::UIStyler::DialogState MultiListJointsAcivated(…); 
    NXOpen::UIStyler::DialogState PartsListActivated(…); 
    NXOpen::UIStyler::DialogState SubAssmChanged(…); 
    NXOpen::UIStyler::DialogState action_AddPart_act_cb(…); 
    NXOpen::UIStyler::DialogState action_DeletePart_act_cb(…); 
    NXOpen::UIStyler::DialogState OK_cb(…);  
    NXOpen::UIStyler::DialogState Cancel_cb(…);     
private: 
    //Dialog Objects (OMITTED) 
    //My variables 
    std::vector<JointObject *> JointObjects;  
    std::vector<JointDerivedPart *> Parts; 
}; 
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The InterfaceManagerUI class has two member variables in addition to the 

dialog objects: the JointObjects vector, and the Parts vector.  These are 

collections of the class objects described in sections 4.1.1 to 4.1.3. 

A callback is a class function that is executed following a specific action from the 

user.  The associations between the callbacks and the GUI objects are illustrated in Figure 

4-6. 

 

 

Figure 4-6: GUI callbacks 

MakeMe_cb is executed when the GUI is first opened.  It parses a file of defaults 

looking for the keywords “Joint”, “ConicalJoint”, and “Part”.  When it finds a keyword, it 

creates the appropriate object using the default constructor, calls its ReadMe function 

which initializes the member variables, then adds the object to the collection and to the 

lists. 
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The action_AddJoint_act_cb callback instantiates a new JointObject 

using the current values of the input objects and adds it to JointObjects and the 

Joints list.  It also verifies that the name of the object being added is not already in the 

list. 

The action_Delete_act_cb callback finds the name in the Joints List that 

matches the current value in the Joint Name box and removes it from the lists and 

removes the associated object from the collection. 

The ListActivated callback finds the JointObject in the collection whose 

name matches the selected name in the list and populates all of the dialog objects with 

values retrieved from the object, including the illustration path.   

RadioChangeDir, RadioChangeOr, and RadioChangeType each call 

the ResetJointImage function, which resets the path of the illustration to match the 

current inputs. 

The PartsListActivated callback finds the JointDerivedPart object in the 

collection that matches the selected name and highlights the items in the Joints List that 

match one of the JointObjects in the JointDerivedPart.  It also populates the values of the 

other dialog objects with values retrieved from the JointDerivedPart object.  If only one 

joint is associated with the JointDerivedPart object, then the second image and Joint 

Position Radio Box are hidden.   

The MultiListJointsAcivated callback sets the left image according to 

the selected joint whose axial position is most forward, and the right image according to 

the second joint if two joints are selected.  If only one item is selected, the image on the 

right and the Aft Joint Position Radio Box are hidden.   
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The action_AddPart_act_cb and action_DeletePart_act_cb 

callbacks work the same as the callbacks to add and delete Joints.  However, it also 

verifies that either one or two joints are selected. 

The SubAssmChanged callback toggles whether the sub-assembly Name Box 

is available. 

If  Cancel_cb is executed, then nothing happens and the dialog closes. 

If OK_cb is executed, then the following code is executed. 

 

this->WriteOutputFile(); 
this->CreateAssemblyAndControlStructure(); 
 
for(int i=0;Parts.size();i++) 
{ 
 Parts[i]->CreatePart(); 
 Parts[i]->MakeWaveLinks(); 
 Parts[i]->SketchCrossSection(); 
} 

 

The CreateAssemblyAndControlStructure  and WriteOutputFile 

member functions are summarized below.  

 

void InterfaceManagerUI::WriteOutputFile(){ 
 ofstream fout(//file path and name of default file); 
 
 for(int i=0;i<JointObjects.size();i++) 
 { 
  JointObjects[i]->WriteMe(fout); 
 } 
 
 for(int i=0;i<Parts.size();i++) 
 { 
  Parts[i]->WriteMe(fout); 
 } 
 
 fout.close(); 
} 
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void InterfaceManagerUI::CreateAssemblyAndControlStructure(){ 
 // Create Assembly Part File 
 // Create expressions for global variables  
      // (axial clearance and radial clearance) 
 // Make and open Control Sketch 
  
  
 // Make expressions and Geometry for each Joint Object 
 // Keep track of which Joint Objects are conical 

std::vector<int> ConIndxs; 
 for(int i = 0;i<JointObjects.size();i++) 
 { 
  JointObjects[i]->MakeExpressions(); 
  JointObjects[i]->MakeGeometry(); 
  if(JointObjects[i]->IsConical) 
   ConIndxs.push_back(i); 
 } 
 
  
 if(ConIndxs.size()==2) // if there are two conical joints 
 { 
  //constain conical flanges to be parallel 
  //Create a dimension between the conical flanges to space   
  //them apart by a default for the interstage thickness 
 } 
 
 //update and close control sketch 
   
 //Create hole sketches 
 for(int i = 0;i<JointObjects.size();i++) 
 { 
  JointObjects[i]->MakeHoleControls(); 
 } 
  
} 

 

In summary, Operation 1 completes the following steps: 

1. Creates the assembly and component files 
2. Creates the assembly control structure 
3. Creates the associative links from the assembly to each child 
4. Starts sketching the child cross sections 

 
Figure 4-7 demonstrates what an example part cross section would look like after 

Operation 1 is complete.  The thicker lines are the sketch lines in the part.  The darker 

thin lines and points are the constraints and the circular lines from the hole sketches.  The 

lighter thin lines are the control structure lines. 
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Figure 4-7: One component cross section 

4.2 Operation 2: Detail features 

Operation 2 contains four main functions.  Each one traverses the entire assembly 

and performs the same routine for each component.  Below is pseudo code that 

demonstrates how to traverse the assembly.   

 

void Traverse(component1){ 
 SetWorkComponent(component1); //make component1 the active part  

subParts = component1->GetChildren();  
 if(subParts.size==0) //ignore assembly parts 

{ 
        //call function to be executed on each part 
 } 
 for(all subParts) 
 { 
  Traverse(subParts[i]); 
 } 
} 
 
int main(){ 
 //get top level assembly part 
 Traverse(TopPart);  
} 
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The four routines called by the traversing function are Revolve, 

DetailFeatures, Extrude, and Pattern.   

4.2.1 Revolve 

The Revolve routine simply queries the active part and finds the sketch feature 

named “CS”.  It then uses the “CurveFeatureRule” to add all of the sketch curves to the 

revolve section.  This enables the function to work without knowing any of the names of 

the curves in the sketch.  The axis of revolution is always the x-axis and the angle of 

revolution is always 360. 

4.2.2 Detail features 

The DetailFeatures routine queries the attributes in the active part to 

determine the number of joints in the part, their types, and their names (as described in 

section 4.1.3).  Then the routine finds the edges of the part body that intersect the key 

vertices of each joint and creates a chamfer or fillet for each one.  The key vertices and 

their associated operations are illustrated in Figure 4-8 and the example code is included 

following the image. 

 

Figure 4-8: Fillet and chamfer rules 
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void DetailFeatures(){ 
  . . .Get Part Body. . . 

 
  //Get number of joints from part attributes 
  std::string numJoints = workPart->       

GetStringAttribute("JOINTS").GetText(); 
  int n = atoi(numJoints.c_str()); 
  //Get top level control sketch 
  Sketch *ControlSketch(dynamic_cast<Sketch *>(displayPart->  
   Sketches()->FindObject("SKETCH_CONTROL_STRUCTURE"))); 
    
  for(int j =1;j<=n;j++) //for each joint in the active part 
  { 
   //get joint id  
   std::string JointID = workPart->      
    GetStringAttribute("JOINT"+stringify(j)).GetText(); 
 //get joint type and separate the first 3 characters 
 std::string JointType = workPart->  
 GetStringAttribute("JOINT"+stringify(j)+"_TYPE").GetText(); 
 std::string shape = JointType.substr(0,3); //CON or CYL 
 . . . get lines from ControlSketch . . .  
  
 //get all edges 

std::vector<Edge *> bodyedges = theRevFeat->GetEdges(); 
 for(int i=0;i<bodyedges.size();i++) //for all edges 
 { 
  double distVertOut= GetMinDist(lineVertOut,bodyedges[i]);  
  double distHorzOut=GetMinDist(lineHorzOut,bodyedges[i]); 
  //if current edge intersects outer flange/boss vertex 

   if((distVertOut<0.001)&&distHorzOut<0.001)  
  { 
   ChamferEdge(bodyedges[i]); 
   continue; 
  } 
  double distVertIn = GetMinDist(lineVertIn,bodyedges[i]); 
  double distHorzIn = GetMinDist(lineHorzIn,bodyedges[i]); 
  //if current edge intersects inner flange/boss vertex 
     if((distVertIn<0.001)&&distHorzIn<0.001)  
  { 
   BlendEdge(bodyedges[i]); 
   continue; 
  } 
      double distXEnd = GetMinDist(lineXEnd,bodyedges[i]); 
  //if current edge intersects inner flange end point 
      if((distXEnd<0.001)&&distHorzIn<0.001)  
  { 
   if(shape=="CYL") //only for cylindrical joints 
   { 
      ChamferEdge(bodyedges[i]); 
    continue; 
}}}} 

 



www.manaraa.com

 52

4.2.3 Extrude 

The extrude routine searches through all of the “linked curve” features and 

finds each of the circles from the control structure.  For each circle it finds, it calls the 

ExtrudeFastenerHole function which extrudes the hole and names the expressions 

and features according to the joint name and row number of the matching arc in the top 

level assembly.  Code for both functions is included below with explanatory comments. 

 

void Extrude(){ 
  . . . get part features (myFeatures) . . . 
  for(int i=0;i<myFeatures.size();i++) 
  { 
   std::string type = myFeatures.at(i)->FeatureType().GetText(); 
   if(!type.compare("LINKED_CURVE"))// all waved control structures 
   { 
     Features::CompositeCurve *myCompCurve         

   (dynamic_cast<Features::CompositeCurve *>(myFeatures.at(i))); 
     for(int j=1;j<=10;j++) //each curve in the wave link feature  
     { 

  Arc *arc1(dynamic_cast<Arc *>(myCompCurve-> 
   FindObject("CURVE"+stringify(j))));     
   Arc *nullArc(NULL); 
   if(arc1!=nullArc) //each control curve that is a valid arc 
   { 
     double deltaAngle = arc1->EndAngle() - arc1->StartAngle(); 
     if(deltaAngle==2*PI) //if arc is a complete circle 
     {       
  ExtrudeFastenerHole(arc1); 
}}}}}} 

 

void ExtrudeFastenerHole(Arc *arc1){ 
   

. . . create the extrude feature (called feature1). . . 
   
 // get the collection of sketches from the top level assembly 
 SketchCollection::iterator sket_it = displayPart->Sketches()->begin(); 
  
  //cycle through the top assembly sketches 
  for(;!(sket_it==displayPart->Sketches()->end());sket_it++)   
  { 
 std::vector<NXObject *> sketchgeometry =(*sket_it) 
    ->GetAllGeometry(); 
 Arc *arc2(dynamic_cast<Arc *>(sketchgeometry[0]));    
 Arc *nullArc(NULL);        
 if(arc2!=nullArc)  //get the valid arc 
 {    
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  //get the assembly arc that matches the input arc 
  Point3d currentCenter = arc2->CenterPoint(); 
  if(fabs(currentCenter.X - arc1->CenterPoint().X) < 0.1)  
  { 
   std::string assmArcName = sketchgeometry[0]   
    ->Name().GetText(); 
   //JointID = the arc name minus "HOLEARC" 
   std::string JointID =    
       assmArcName.substr(assmArcName.size()-7);   
   feature1->SetName(JointID+"_HOLE"); 
   break; 
}}}} 

  

4.2.4 Pattern 

One of the limitations in the NX Open C++ library is its inability to create feature 

patterns.  Because of this, the Pattern routine uses the C language API and converts 

between the C “tag” objects and the C++ class objects.  There are some objects however, 

that cannot be converted to tags.  The new version of the Hole feature in NX 5 Release 3 

could not be converted to a tag and this is the reason extruded sketches were used to 

create the fastener holes.  There were other problems associated with the Pre-NX5-

Release 3 Hole feature as well. 

The Pattern routine first finds each of the extrude features in the active part 

whose name ends in “_Hole”.  For each one, it extracts the name of the joint object from 

the extrude feature name (the portion before “RX_Hole”).  Then it creates a circular 

pattern referring to the expressions in the top level assembly which were created during 

Operation 1 as explained in section 4.1.1.  More specifically, it sets the instance quantity 

to “myAssembly::JointName_N” and the angle to “360/myAssembly::JointName_N”.  

The routine also renames the expressions created for the pattern feature to be meaningful. 

Example code for finding the extrude features and creating the patterns is as follows. 
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//// FINDING THE EXTRUDE FEATURES //// 
. . . get all of the features from the active part (myFeatures) . . . 
for(int i=0;i<myFeatures.size();i++){ 
 std::string type = myFeatures.at(i)->FeatureType().GetText(); 
 //for all extrude features 
 if(!type.compare("EXTRUDE")) 
 {    
   Features::Extrude *myExtrude = 
         dynamic_cast<Features::Extrude *>(myFeatures.at(i)); 
   std::string name = myExtrude->Name().GetText(); 
   if(name.size()>5) //prevents crashing on non-named features 
   { 
       // if name ends in “_Hole” 
        if(!name.substr(name.size()-5).compare("_HOLE"))     
     { 
    // get the next feature as well 
  i++; 
  Features::Extrude *myExtrude2 =  
         dynamic_cast<Features::Extrude *>(myFeatures.at(i)); 
     // call the pattern routine for both features 
  PatternFastenerHoles(myExtrude,myExtrude2); 
}}}} 
 

//// CREATING THE PATTERN AND RENAMING EXPRESSIONS //// 
void PatternFastenerHoles(Features::Extrude *R1extrudeFeature, 
    Features::Extrude *R2extrudeFeature){ 
   
. . .  convert feature objects to tags and add to feature_list . . . 

. . .  create other input data structures . . . 
 
  //extract joint ID from extrude feature name 
  ExtrudeName = R1extrudeFeature->Name().GetText(); 
  //Joint name = extrude name minus “RX_HOLE” 
  FirstJointName = ExtrudeName.substr(0,ExtrudeName.size()-7);   
 
  //create the expressions for the instance number and spacing angle 
  number_str = "myAssembly::"+FirstJointName+"_N"; 
  Ang_str = "360/myAssembly::"+FirstJointName+"_N"; 
   
  // make the pattern feature with other inputs   
  UF_MODL_create_circular_iset(... ,number_str,Ang_str,feature_list); 
 
  //get iterator of the expression collection in the active part 
  NXOpen::ExpressionCollection::iterator exp_it =  
      workPart->Expressions()->begin(); 
   
  //cycle through all expressions 
  for(;exp_it!=workPart->Expressions()->end();exp_it++)    
  { 
 name = (*exp_it)->Name().GetText(); 
 RHS = (*exp_it)->RightHandSide().GetText(); 
 //if right hand side matches number_str  
      //and name does not match “JointName_N” 
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 if(!RHS.compare(number_str)&&(name.compare(FirstJointName+"_N"))) 
 { 
  //rename expression from p123 to “JointName_N” 
  workPart->Expressions()->Rename((*exp_it), FirstJointName+"_N");       
  break; 
 } 
  } 
 
  //the rename function reorders the collection of expressions,  
  //so after the first expression is renamed, the loop was restarted   
  exp_it= workPart->Expressions()->begin(); 
  for(;exp_it!=workPart->Expressions()->end();exp_it++)         
  { 
 name = (*exp_it)->Name().GetText(); 
 RHS = (*exp_it)->RightHandSide().GetText(); 
 if(!RHS.compare(Ang_str) 
            &&(name.compare(FirstJointName+"_FastAng"))) 
 { 
  //renames p123 to “JointName_FastAng”  
   workPart->Expressions()->   
    Rename((*exp_it),FirstJointName+"_FastAng");     
  break; 
}}} 

 

4.3 Operation 3: Insert door 

Operation 3 allows the user to insert an access door on the interstage including the 

door frame and the stiffening alterations on the interstage body.  There are two sub tasks 

involved in Operation 3.  The first creates the door and door frame components and 

stiffens the interstage.  The second creates the fastener holes for all three components. 

4.3.1 Operation 3a: Components 

When Operation 3a is executed, a GUI is opened to retrieve inputs from the user 

for defining the type of door frame and whether the interstage should be stiffened (See 

Figure 4-9).  The GUI also retrieves inputs for the fastener sizes, the corner radii, the 

thicknesses of the frame and the stiffened cross section.  Using dialog callback functions, 

the Load Bearing Inputs section and the Stiffening Inputs section is hidden if the 
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associated check boxes are unchecked.  The inputs from the GUI are stored as global 

variables so they can be accessed by any of the functions within the program.  Once OK 

is clicked, the dialog closes and the user is asked to select the sub-assembly into which 

the door and door frame components are then added.  Expressions are also created in the 

components using the input variables. 

 

 

Figure 4-9: Door definition GUI 

Since this operation will be executed for each door, it must use a naming 

convention that provides unique object and expression names for each door.  An 

expression in the interstage sub-assembly keeps track of the number of doors and an 

appropriate prefix is added to each name i.e. “Door1”, “Door2” etc.  A global variable is 

also created so that each sub-function in the application can reference the number of 

doors as needed. 
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Interstage 

As described in Chapter 3, this operation requires geometric inputs from the user.  

There must be a sketch in the interstage component that represents the cutout region.  The 

sketch must be created on a plane that is tangent to the surface of the interstage and must 

contain a closed, concave loop of lines.  The second geometric input is the line in the 

cross section that will be revolved to create the IML surface.  When the operation begins, 

the user is also prompted to select the interstage component and its sub-assembly to 

ensure that the correct part files are modified. 

The first step in altering the interstage is to extrude the cutout sketch and apply 

blends to its extruded edges.  The extrude function, like the revolve routine discussed in 

section 4.2.1, uses the “CurveFeatureRule” to add all of the lines from the selected sketch 

to the section definition of the extrude function.  This eliminates the need to name the 

sketch lines.  After the sketch is extruded into a sheet body, the blend function needs to 

identify the correct edges on the sheet body.  This is done by comparing the direction of 

each edge to the direction of the extrude feature.  Sample code of this procedure is 

summarized below. 

 

//// COLLECTING EDGES WHOSE DIRECTION MATCHES EXTRUDE DIRECTION //// 
std::vector<Edge *> edges4; 
//loop though all edges in the feature 
for(int i=0;i<allEdges.size();i++) 
{ 
 // get vertices of current edge 

allEdges[i]->GetVertices(vertex1,vertex2); 
//calculate magnitude of edge vector 

 double mag = sqrt(pow(vertex1->X - vertex2->X,2) 
      +pow(vertex1->Y - vertex2->Y,2) 
   + pow(vertex1->Z - vertex2->Z,2)); 
 //calculate unit edge vector 
 Vector3d edgeUnitVect((vertex1->X - vertex2->X)/mag, 
    (vertex1->Y - vertex2->Y)/mag, 
    (vertex1->Z - vertex2->Z)/mag); 
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 //compare edge vector to extrude vector 
 if(fabs(edgeUnitVect.X - extrudeVect.X)<.0001) 
 { 
  //add current edge to collction if vectors match 
  edges4.push_back(allEdges[i]); 
 } 
} 

 

The next step in Operation 3a is to create the offset surfaces from the IML surface 

and from the cutout surface.  If the user selects the non-stiffened interstage option, then 

the only offsets that are needed are for the surfaces at the beginning of the flange and at 

the outer mold line (OML).  Otherwise, offsets are needed to represent the entire 

boundary of the stiffening body that will be united to the interstage body. 

The only difficulty in creating the offset surface features is verifying that the 

offset directions are correct.  In order to do this, one offset surface is created and its 

position is compared to the position of the source surface.  If the position is incorrect, the 

offset feature is edited to flip the offset direction.  A Boolean variable keeps track of 

whether the first offset was flipped or not and applies the same flip condition to all 

subsequent offsets.  These segments of the code are shown below. 

 

////VERIFY THAT OFFSETS ARE IN CORRECT DIRECTION//// 
bool FlipOffset = false;    //boolean variable to track flip condition 
 
//get maximum radius of the outermost vertex  
//of the line used to create the IML surface 
double IMLR1 = sqrt(lineIR->StartPoint().Y*lineIR->StartPoint().Y  

+ lineIR->StartPoint().Z*lineIR->StartPoint().Z); 
double IMLR2 = sqrt(lineIR->EndPoint().Y*lineIR->EndPoint().Y  

+ lineIR->EndPoint().Z*lineIR->EndPoint().Z); 
double IMLR = max(IMLR1,IMLR2);  
 
//get outermost vertex on offset surface 
double offsetR,R1,R2;  
offsetR=R1=R2= 0;  
//get offset surface edges 
std::vector<Edge *> offsetEdges = OMLOffset->GetEdges(); 
//loop over all edges 
for(int i =0;i<offsetEdges.size();i++) 



www.manaraa.com

 59

{ 
 //get vertices of currect edge 
 offsetEdges[i]->GetVertices(vertex1,vertex2); 

//calculate radii of vertices 
 R1 = sqrt(vertex1->Y*vertex1->Y+vertex1->Z*vertex1->Z); 
 R2 = sqrt(vertex2->Y*vertex2->Y+vertex2->Z*vertex2->Z); 
 //if either radius is the new maximum 
 if(max(R1,R2)>offsetR) 
 { 
  offsetR=max(R1,R2); //set offsetR equal to it 
 } 
} 
//if offsetR is less than IMLR, reverse the direction of the IML 
if(offsetR<IMLR) 
{ 
 ReverseOffsetDirection(FlipOffset); 
} 

 

The offset surfaces represent all of the boundaries for the stiffening region that are 

normal to either the cutout surface or the IML surface.  For the rest of the boundaries, a 

routine is called to generate a swept surface using intersection curves as guides.  Here is 

an illustration of the inputs and results for this routine followed by its pseudo-code. 

 

 

Figure 4-10:  Inputs and results of swept surface routine 
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SweptSurface(Offset1a,Offset1b,Offset2a,Offset2b){ 
 GuideCurve1 = Intersection(Offset1a,Offset1b); 
 GuideCurve2 = Intersection(Offset2a,Offset2b); 
 Point1 = Intersection(GuideCurve1,XZPlane); 
 Point2 = Intersection(GuideCurve2,XZPlane); 
 SweepSection = Line(Point1,Point2); 
 SweptSurface = Sweep(SweepSection,GuideCurve1,GuideCurve2); 
} 

 

When creating the sweep feature, the guide curves must be pointing in the same 

direction.  To verify this, compare the signs of the Y and Z components of the guide 

direction vectors.  If either of the component signs do not match, then execute the 

ReverseDirectionOfClosedLoop API command.  

 Now that there are surfaces which bound the entire stiffening region, they must 

be trimmed to exclusively represent the boundary surfaces of the stiffening body as 

discussed in Chapter 3.  Except for finding the region points, the trimming operation is 

straightforward.  The function inputs include the set of surface bodies to be trimmed, the 

set of faces that will trim them, and the set of points representing the regions to either be 

retained or discarded.  The bodies and faces have already been created at this point and 

just need to be grouped into sets.  The easiest way to obtain the set of region points is to 

use the vertices of the edges on the source bodies because it is always known whether the 

regions containing the edges should be retained or discarded.  Here is the example code 

of finding the region points. 

 

//// FINDING REGION POINTS //// 
 
//if region point can be any vertex on the source body 
Point3d Pnt1(0,0,0); 
Point3d Pnt2(0,0,0); 
SourceFace->GetEdges()[0]->GetVertices(&Pnt1,&Pnt2); 
trimmedSheet = TrimSheet(Body,Face,Pnt1,bool_keep,"featureName"); 
 
//if region point must be the innermost vertex on the source body 
std::vector<Edge *> ex_edges = SourceFace->GetEdges(); 
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Point3d Pnt1 = GetMinREdgePoint(ex_edges); 
trimmedSheet = TrimSheet(Body,Face,Pnt1,bool_keep,"featureName"); 
 
 
//the function for getting the innermost vertex 
//it is trivial to modify this function to return the outermost vertex  
Point3d GetMinREdgePoint(std::vector<Edge *> edges){ 
  //std::vector<Edge *> edges = trimmed_cutOut->GetEdges(); 
  double R = 100000; 
  double tempR1,tempR2; 
  Point3d minPoint; 
  Point3d vertex1(0, 0, 0); 
  Point3d vertex2(0, 0, 0); 
  for(int i = 0;i<edges.size();i++)  
  { 
 edges[i]->GetVertices(&vertex1,&vertex2); 
 tempR1 = sqrt(vertex1.Y*vertex1.Y+vertex1.Z*vertex1.Z); 
 tempR2 = sqrt(vertex2.Y*vertex2.Y+vertex2.Z*vertex2.Z); 
 
 
 if(tempR1<R) 
 { 
   minPoint.X  = vertex1.X; 

  minPoint.Y  = vertex1.Y; 
  minPoint.Z  = vertex1.Z; 
  R = tempR1; 

 } 
 if(tempR2<R) 
 { 
    minPoint.X  = vertex2.X; 

  minPoint.Y  = vertex2.Y; 
  minPoint.Z  = vertex2.Z; 

   R = tempR2; 
 } 
  } 
  return minPoint; 
} 

 

The last steps in altering the interstage component are also straightforward.  The 

interstage body should first be trimmed by the offset surfaces to remove the cutout region 

and any region where the stiffening portion is thinner than the body.  Figure 4-11 shows 

the two bodies before and Figure 4-12 shows the bodies after the trimming operation.  

The trimmed boundary surfaces of the stiffening body should then be sew together and 

united with the interstage body through a Boolean operation (see Figure 4-13).   
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Figure 4-11: The interstage body (partially transparent) and the stiffening body before trimming 

 

Figure 4-12:  The trimmed interstage body and the stiffening body 
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Figure 4-13: United interstage body and stiffening body 

Frame 

The first step in creating the frame component body is wave linking the key 

surfaces from the interstage component.  This is another capability that is lacking in the 

NX Open C++ API.  Creating the wave linked faces is easily accomplished in the C-

language API though and does not need much discussion other than to mention that the 

surfaces that should be wave linked are 1) the IML surface, 2) the cutout surfaces, 3) the 

outer flange surface, and 4) the surfaces around the beginning of the flange  (See Figure 

4-14).  

The offset surfaces on the door frame are created in the same manner as discussed 

for the interstage offset surfaces.  First, there are offsets created from the IML surface 

and from the cutout surface to provide clearances between the frame and the interstage.  
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Depending on the type of frame specified by the user, other offset surfaces are created to 

bound all of the surfaces on the boundary (See Figure 4-15).  

 

 

Figure 4-14: Wave linked faces in the door frame  

 

Figure 4-15:  Frame offset surfaces 
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One issue comes up when creating an inward facing offset with a value that is 

larger than the blend radius of the original cutout blends.  As illustrated in Figure 4-16, 

which is aligned with the extrude direction, the inner flange offsets’ blended faces would 

fail and the linear faces would cross each other.  To correct this issue, offsets are only 

applied to the linear faces and then face blend features are created between adjoining 

surfaces.   

 

 

Figure 4-16: Large inward facing offsets need face blend feature 

For the face blend features to work properly, the faces must be ordered by 

proximity.  This was accomplished by first collecting the top edge of each inner flange 

offset surface, and then finding the edge whose vertex is closest to one of the vertices  on 

the first edge.  The indexes of the faces are added to a list and the process repeats with 

each new edge while ignoring the indexes that have already been listed.  After all the 

faces have been added to the list, a face blend feature is created between each face and 
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the face listed next in the list.  Finally a face blend feature is created between the first and 

last face in the list.  The code for creating the ordered list of indexes and for creating the 

face blend features is shown below. 

 

//// ORDERING FACES AND INSERTING FACE BLEND FEATURES //// 
. . . get top edges of offset faces . . . 

//get ordered list of indexes 
std::vector<int> SortedIndexes; 
SortedIndexes.push_back(0); 
for(int i = 0;i<topEdges.size()-1;i++) 
{ 
 GetClosestEdge(topEdges,SortedIndexes,SortedIndexes.back());  
} 
//Blend each face to its neighbor 
for(int i=0;i<InnerFlangeFaces.size()-1;i++) 
{ 
 FaceBlend(InnerFlangeFaces[SortedIndexes[i]], 
     InnerFlangeFaces[SortedIndexes[i+1]],"InnerFlangeBlendR");  
} 
FaceBlend(InnerFlangeFaces[SortedIndexes[0]], 

InnerFlangeFaces[SortedIndexes.back()],"InnerFlangeBlendR"); 
 

// FUNCTION FOR GETTING NEXT CLOSES EDGE // 
void GetClosestEdge(std::vector<Edge *> edges, 

        std::vector<int> &SortedIndexes, 
         int index){ 

  //get the vertices of the key edge 
  Point3d v1(0, 0, 0); 
  Point3d v2(0, 0, 0); 
  edges[index]->GetVertices(&v1,&v2); 
  double MinDist = 1000; 
  int closestEdgeIndex; 
 
  for(int i=0;i<edges.size();i++) //loop over all edges 
  { 
 // determine whether current index is already in the sorted list 
 bool ignore = false; 
 for(int j = 0;j<SortedIndexes.size();j++) 
 { 
   if(SortedIndexes[j]==i) 
    ignore=true; 
 } 
 
 // if it is not then... 
 if(!ignore) 
 { 
   // get the vertices on the current edge 
   Point3d tempv1(0, 0, 0); 
   Point3d tempv2(0, 0, 0); 
   edges[i]->GetVertices(&tempv1,&tempv2); 
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  //calculate distance from each current vertex to each key vertex 
   double dist1 = sqrt( pow(v1.X-tempv1.X,2)  
    + pow(v1.Y-tempv1.Y,2) + pow(v1.Z-tempv1.Z,2) ); 
   double dist2 = sqrt( pow(v2.X-tempv1.X,2)  
    + pow(v2.Y-tempv1.Y,2) + pow(v2.Z-tempv1.Z,2) );  
   double dist3 = sqrt( pow(v1.X-tempv2.X,2)  
    + pow(v1.Y-tempv2.Y,2) + pow(v1.Z-tempv2.Z,2) ); 
   double dist4 = sqrt( pow(v2.X-tempv2.X,2)  
   + pow(v2.Y-tempv2.Y,2) + pow(v2.Z-tempv2.Z,2) ); 
   //reset closestEdgeIndex and MinDist if closer edge is found 

  if (dist1<MinDist){ 
  MinDist=dist1; 
  closestEdgeIndex=i; 
   } 
   if (dist2<MinDist){ 
  MinDist=dist2; 
  closestEdgeIndex=i; 
   } 
   if (dist3<MinDist){ 
  MinDist=dist3; 
  closestEdgeIndex=i; 
   } 
   if (dist4<MinDist){ 
  MinDist=dist4; 
  closestEdgeIndex=i; 
  }}} 
  SortedIndexes.push_back(closestEdgesIndex); 
} 
  

 

Figure 4-17 illustrates the results after creating face blends on the inner flange 

offsets from Figure 4-16.  If the offset surfaces were originally ordered as shown, the 

SortedIndexes vector would end up being [0,1,3,4,2] and face blends would be 

created between surfaces 0 and 1, 1 and 3, 3 and 4, 4 and 2, and finally 0 and 2.  

After the offset surfaces and face blend features have been created, the surfaces 

are trimmed and sewn together using the same methods discussed for the interstage ( See 

Figure 4-18 and Figure 4-19)       
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Figure 4-17:  Face blend example 

 

Figure 4-18: Trimmed surfaces on frame 
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Figure 4-19: Door frame surfaces sewn into solid body 

Door 

There were only a couple additional issues in creating the door component and 

they both involved the wave link features.  First, it should be noted that the specific 

surfaces wave linked to the door component depend on which type of door frame was 

selected by the user.  If the user selected a non-load-bearing door frame, then the cutout 

surface from the interstage should be linked to the door component instead of the inner 

boss offset surfaces from the frame component.   

The second issue was that a separate feature is created in the part history tree for 

each wave linked face and offset surface patch in the frame component.  In other words, 

if the original door cutout sketch included 4 lines, then there would be separate offset 

surface features and wave link features for each of the 4 faces plus one for each of the 4 

blended faces.  This requires the function that creates the door component to know how 

many surface features it needs to link to.  
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This issue was resolved by outputting the number of sides from the function that 

creates the door frame component and inputting it into the function that creates the door 

component.  Thus, the door function was able to link the correct number of surfaces 

based on the number of sides in the cutout sketch. 

Results 

The completion of Operation 3a results in a modified interstage having a cutout of  

user-specified shape with or without a  stiffened cross section.  It also results in either a 

load-bearing or non load-bearing door frame following the arbitrary shape and a door 

component that also fits the frame with tolerances.  Operation 3a also creates all of the 

necessary associative links between the three components and the parameters that will be 

used in Operation 3b to insert fastener holes of the specified size. Figures 4-20 through  

4-23 show top views and section views of two door examples with different user options. 

 

  

Figure 4-20 Top view of stiffened load-bearing door configuration 
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Figure 4-21: Section view of stiffened load-bearing door configuration 

 

Figure 4-22: Top view of un-stiffened, non load-bearing door configuration 
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Figure 4-23 Section view of un-stiffened, non-load bearing door configuration 

4.3.2 Operation 3b: Door fasteners 

Operation 3b relies on Operation 3a to create the part expressions and part bodies.  

It is separated as a unique application so that the fastener details can be inserted into the 

model when the designer wishes.  This enables the designer to alter the design and make 

modifications to the components before including the full details of the fastener holes. 

There are a few over-arching routines utilized in Operation 3b that are repeated 

for each set of fastener holes.  They are 1. MakeOffsetHoles, 2. CreateSimpleHole, 3. 

WaveLinkPoint, and 4. ProjectPoints.  The pseudo-code below summarizes how these 

routines are executed in the main operation. 
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void do_ugopen_api() 
{ 

. . . Get Door Component (gDoor_comp), Door Frame Component 
(gFrame_comp), and Interstage component (gInt_comp) from user 

selections. . . 
 
  //Fasteners between interstage and door frame 
  SetWorkComponent(gInt_comp); 
  MakeOffsetHoles(... outer flange inputs ...,interstagePoints); 
   
  SetWorkComponent(gFrame_comp);  
  std::vector<Point *> FrameLinkedPoints; //output vector 
  for(interstagePoints)  
  { 
 WaveLinkPoint(interstagePoints[i],gFrame_comp,FrameLinkedPoints); 
  } 
  CreateSimpleHole(FrameLinkedPoints,... outer flange inputs ...); 
   
  //Fasteners between door frame and door 
  MakeOffsetHoles(... inner flange inputs ...,framePoints); 
 
  SetWorkComponent(gDoor_comp);  
  std::vector<Point *> DoorLinkedPoints; //output vector 
  for(framePoints) 
  { 
 WaveLinkPoint(framePoints[i],gDoor_comp,DoorLinkedPoints); 
  }  
  Features::ProjectCurve *projFeat = ProjectPoints(DoorLinkedPoints); 
  CreateSimpleHole(projFeat,... inner flange inputs ... ); 
}   

MakeOffsetHoles 

As described in Chapter 3, the first step in adding fastener details is creating an 

offset curve of the cutout edge on the flange surface.  The easiest way to find the correct 

edge and face is to prompt the user to select them manually.  Since this was a challenging 

aspect of the program, the example code is included below.  The MaskTriple object is the 

key to ensuring the correct type of object is selected.  Other object type definitions can be 

found in “uf_ui_types.h”. 

//// Get Selection From User //// 
UI *theUI = UI::GetUI(); 
Selection *thisSelection = theUI->SelectionManager(); 
thisSelection->initialize(); 
 
// set selection mask to only allow the correct type of object 
std::vector<Selection::MaskTriple> mask_array; 
Selection::MaskTriple mask1 = Selection::MaskTriple::MaskTriple 
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  (UF_solid_type,UF_all_subtype,UF_UI_SEL_FEATURE_ANY_EDGE); 
           // or ..._ANY_FACE... 

mask_array.push_back(mask1); 
NXObject *selectedObject1; 
Point3d cursor(0,0,0); 
 
// get the selection from the user 
Selection::Response response1 = thisSelection->SelectObject 
  ("Select the forward outer flange edge","", SelectionScopeWorkPart,  
  SelectionActionClearAndEnableSpecific,false,false,mask_array,   
  &selectedObject1,&cursor); 
// verify the response and convert the retrieved object  
if(response1==Selection::ResponseObjectSelected) 

Edge *cutoutedge = dynamic_cast<Edge *>(selectedObject1); 
   
 

This method was also used in the main function to obtain the door and door frame 

components as well as the interstage component.  The prefix used in naming objects and 

retrieving objects from the existing components is extracted from the name of the 

selected door component. 

  After retrieving the edge and face from the user, the offset in face feature is 

created with the offset distance being a function of the diameter for the current set of 

fasteners.  The diameter is retrieved from existing expressions in the part.  As with the 

other offset features, the direction must be verified.  In order to do this, the user is asked 

to select the forward most edge of the cutout, and then the routine finds the forward most 

vertex on the offset curves.  If the forward most vertex on the offset curves is not more 

forward than the selected edge, then the offset direction is reversed. 

The next step in the MakeOffsetHoles routine, is creating evenly spaced points 

along the offset curves.  Because the NX feature that adds arrays of points to a curve is 

non-associative, individual Smart Point features need to be created at specific parameter 

values along the curves.  For each curve segment of the offset feature, the length of the 
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curve is queried, and the number of points is calculated based on the hole diameter and 

the curve length to leave a certain spacing between each hole.   

Since the curve segments share vertices, only every other curve should have 

points at its ends.  The number of points (N) on a curve including the endpoints is 

calculated by Equation 4.1 and the number of points (N) on a curve excluding the 

endpoints is calculated by Equation 4.2 

1))D*5.3/(L(ceilN +=        (4-1) 

1))D*5.3/(L(ceilN −=        (4-2) 

where L is the length of the curve, D is the fastener diameter, and ceil represents the 

ceiling function.  Since N needs to be a discreet value, the spacing will not be an even 

multiple of the diameter, but is within 5-10% of 3 diameters.   

In order to distinguish which curves should have points at the ends, the curves in 

the offset feature are ordered by length.  The longest half of the curves (the sides of the 

cutout) will have points at their ends and the shortest half (the corners of the cutout) will 

not.  As each point is created it is added to a collection.  Then once all of the points have 

been added to each curve of the feature, the CreateSimpleHole routine is called on the 

collected points. 

CreateSimpleHole 

  The CreateSimpleHole routine creates the NX 5-Release 2 version of hole 

feature.  This new hole feature is able to create holes which are normal to the nearest 

solid surface at the specified points.  This routine allows for two different methods of 

specifying the input points.  It can take in either a vector of points, or a feature which 
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contains points.  The code for adding the points to the “HolePackageBuilder” as it is 

called in the C++ API is included below. 

 

if(FeaturePoints) //if points are input from a feature 
{ 
  std::vector<Features::Feature *> features1(1); 
  features1[0] = feat; //the input feature 
  FeaturePointsRule *featurePointsRule1 = workPart->ScRuleFactory()->    
   CreateRuleFeaturePoints(features1); 
    
  holePackageBuilder1->HolePosition()->AllowSelfIntersection(true); 
    
  std::vector<SelectionIntentRule *> rules2(1); 
  rules2[0] = featurePointsRule1; //select all points of the feature 
  NXObject *null (NULL); 
  Point3d helpPoint1(0.0, 0.0, 0.0); 
  holePackageBuilder1->HolePosition()->AddToSection(rules2,  
      null,null,null,helpPoint1,Section::ModeCreate, false); 
} 
else //if points are input from a vector 
{ 
  Xform *nullXform(NULL); 
  Point *point2; 
  for(int i=0;i<points.size();i++){     
    point2 = workPart->Points()->CreatePoint(points[i], nullXform,  
   SmartObject::UpdateOptionWithinModeling); 
    holePackageBuilder1->HolePosition()->AddSmartPoint(point2,  
   0.00095);   
  } 
} 

WaveLinkPoint 

The WaveLinkPoint routine is called in a loop to create the associative copies of 

the fastener location points in the mating component.  It reads in one point, the target 

component, and the collection of wave linked points.  Each time it is called it adds the 

linked point to the existing collection.  Here is the code for the routine. 

 

void WaveLinkPoint(NXOpen::Point *point1, 
      Assemblies::Component *comp1,  
       std::vector<Point *> &WavedPoints) 
{ 
  //declare object tags 
  tag_t  point,link_point, feat, comp, xform, target_part; 
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  tag_t  target_object = NULL_TAG, 
  //get tags from input objects 
  point = point1->GetTag(); 
  comp = comp1->GetTag(); 
  
  if ((point != NULL_TAG)&& (comp != NULL_TAG)) //if inputs are valid 
  { 
    target_part  = UF_ASSEM_ask_prototype_of_occ(comp); 
    ensure_part_fully_loaded(target_part); 
    target_object = UF_OBJ_cycle_all( target_part, target_object); 
 
    if (UF_ASSEM_is_occurrence(point)){ 
      UF_SO_create_xform_assy_ctxt(target_part, 
          UF_ASSEM_ask_part_occurrence(point), comp, &xform); 
      point = UF_ASSEM_ask_prototype_of_occ( point ); 
    } 
    else{ 
       UF_SO_create_xform_assy_ctxt(target_part, NULL_TAG,comp,&xform); 
    } 
 
    UF_WAVE_create_linked_pt_point(point,NULL_TAG,target_object,&feat);  
    UF_WAVE_ask_linked_feature_geom(feat, &link_point); 
    //convert the point tag back to a C++ object 
    TaggedObject *pnt = NXOpen::NXObjectManager::Get (link_point); 
    Point *point1(dynamic_cast<Point *>(pnt)); 
    //add the point object to the collection 
    WavedPoints.push_back(point1); 
        
  } 
}  

ProjectPoints 

The ProjectPoints routine takes in a vector of points and projects them to a surface 

selected by the user.  It then returns the projection feature so that it can be passed into the 

CreateSimpleHole routine.  The portion of code that adds the points to the feature section 

is shown below 

 

Xform *nullXform(NULL); 
Point *point1; 
for(int i =0;i<pnts.size();i++) //pnts = input vector 
{ 
 point1 = workPart->Points()->CreatePoint(pnts[i], nullXform,   

SmartObject::UpdateOptionWithinModeling); 
 projectCurveBuilder1->SectionToProject()->AddSmartPoint(point1,0.001); 
}   
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Summary 

After Operation 3b is complete, the fasteners holding the frame to the interstage 

and the fasteners holding the door to the frame are completely defined and linked 

associatively guaranteeing that the components mate properly.  Figures Figure 4-24 

through Figure 4-27 show the same components from Figures 4-20 through  4-23 with the 

fastener details added. 

 

 

Figure 4-24: Top view of fastener details for a stiffened, load-bearing configuration. 
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Figure 4-25: Section view of fastener details for a stiffened, load-bearing configuration 

 

Figure 4-26: Top view of fastener details for an un-stiffened, non load-bearing configuration. 
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Figure 4-27: Section view of fastener details for an un-stiffened, non load-bearing configuration 
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5 Results 

As stated in Chapter 1, the objectives of this thesis are: 

• Create a framework of intelligent, high-level, operations that can be used to 

quickly design a wide range of rocket interstage components and assemblies. 

• Show that these features/operations decrease the design time without impeding 

innovation. 

To determine whether these objectives were met, and to what extent they were or 

were not successful, three elements of the objectives will be evaluated:  

1. the range of designs supported by the framework, 

2. the time savings observed, and  

3. The proportion of the design left open to the engineer.  

5.1 Range of supported designs 

As a theoretical framework, the methods developed in this thesis will work for 

any interstage assembly design.  In practice, there are certain limitations.  The 

implementation described in Chapter 4 is capable of supporting any interstage design, 

subject to these limitations: 
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Interface Manager Limitations 
• The interfaces must be either cylindrical or conical bolted flanges 
• The fastener pattern must be either a single row or a double offset row pattern 
• The distances from the fastener centerlines to the flange edges and between 

the fastener rows are predetermined but may be changed later. 
• The axial position of any joint must be at least nine diameters from the origin. 
• The minimum radius for any interface is three inches. 
• An assembly component must contain either one or two interfaces. 

 
Component Cross Sections Limitations 

• All cross sections must contain closed loops and must not self-intersect. 
• The thickness of any bolt flange must be less than five inches. 
• All cross sections must extend at least the entire length of the control 

structure’s flange.  
 

Detail Features Limitations 
• The chamfer and fillet dimensions cannot be pre-specified.  They may only be 

changed after running the application. 
 

Insert Door Limitations 
• The cutout sketch must be on a plane that is tangent to the interstage surface at 

the center of the cutout. 
• The door cutout sketch must be a closed loop with no convex regions and no 

self-intersections 
• The cutout region’s minimum width must be at least ten times the inner 

fastener diameter 
• There space between the cutout sketch and the interstage flange on both sides 

of the cutout must be at least five outer diameters plus the stiffening length 
• The stiffening cross section around the cutout is predetermined 
• There are only two door frame cross sections to choose from 
 

Door Fasteners Limitations 
• The offset distances from the flange edges and the spacing between fasteners 

is predetermined 
• There is only one row of fasteners per flange 
 
 
To illustrate the spectrum of designs that are still possible, consider the total 

number of possible combinations of interfaces for one component (Nc).  Let Nt be the 

total number of available interface types and Ni be the maximum number of interfaces 

associated with one component.  Nc can then be calculated by  
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which accounts for components with any number of joints from 1 to Ni. 

For the current implementation of the InterfaceManager framework, Nt = 8 

and Ni = 2.  Therefore, for this implementation of the framework, Nc = 82 + 8 = 72.  This 

means that there are 72 distinct joint combinations that can be used to create each 

component.  Furthermore, the assembly can include any number of components and the 

variations of cross sections for each component is unlimited. 

The framework can be expanded to include practically any type of interface found 

on rocket interstages, and to allow more than two interfaces per component.  Thus the 

framework has the potential to cover the entire range of designs for interstage 

configurations.  The method used to build this framework is also general enough to work 

for other product types.  With some additional development, extruded cross sections and 

access doors on any input surfaces would also be possible.       

5.2     Time savings 

To determine the value of the proposed methods, three test subjects were asked to 

perform a set of modeling tasks using both the traditional approach and the approach 

implemented in this thesis.  Each task correlated with one of the method’s main 

Operations.  For each test subject, the number of key-strokes and mouse clicks, and the 

completion time was recorded for each method.  The results from each task were 

compiled to estimate the time and effort required to model an entire interstage assembly.   
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The test subjects were graduate engineering students with two to three years’ 

experience using NX.  Therefore the test subjects’ completion times are most likely 

longer compared to those of more experienced engineers. 

5.2.1 Task 1: Interface manager 

In task 1, the test subject must define the control structure for one cylindrical 

interface and one conical interface including the hole location sketches.  He must then 

add a new component to the assembly, create the linked geometry features, and create a 

fully constrained sketch of the part cross section.  Table 5-1 lists the results of the three 

test subjects for both methods and the comparison between the two methods.  There was 

a testing error so some data for test subject 3 is unavailable. 

Table 5-1: Task 1 completion statistics 

Traditional Method Proposed Method Percent Difference Test 
Subject Key-

strokes 
Mouse 
Clicks 

Time 
(min.) 

Key-
strokes 

Mouse 
Clicks 

Time 
(min.) 

Key-
strokes 

Mouse 
Clicks 

Time  

1 864 717 45.27 84 99 5.48 90.60% 86.19% 87.89% 
2 1236 947 61.78 89 95 4.67 92.80% 89.97% 92.45% 
3  error  error 41.73 54 148 6.87     —    — 83.75% 
Average 1065 832 49.59 75.67 114 5.64 91.7% 88.1% 88.0% 

 

5.2.2 Task 2: Detail features 

In task 2, the subject must make a revolve feature from the cross section, add 

chamfer and blend features, and create the hole extrudes and patterns.  Results from the 

three test subjects are listed below in Table 5-2. 



www.manaraa.com

 85

Table 5-2: Task 2 completion statistics 

Traditional Method Proposed Method Percent Difference Test 
Subject Key-

strokes 
Mouse 
Clicks 

Time 
(min.) 

Key-
strokes 

Mouse 
Clicks 

Time 
(min.) 

Key-
strokes 

Mouse 
Clicks 

Time  

1 220 201 14.28 0 2 0.12 100% 99.00% 99.18% 
2 72 178 10.48 0 3 0.10 100% 98.31% 99.05% 
3 31 199 9.68 0 2 0.10 100% 98.99% 98.97% 
Average 107.6 192.7 11.48 0 2.3 0.11 100% 98.77% 99.07% 

 

5.2.3 Task 3: Insert door 

In task 3, an interstage component is provided as well as a sketch of the door 

cutout.  The subject is asked to make the cutout in the interstage, and create the door 

frame and door component bodies.  The simplest door configuration was selected, so the 

results listed below in Table 5-3 will be conservative. 

Table 5-3: Task 3 completion statistics 

Traditional Method Proposed Method Percent Difference Test 
Subject Key-

strokes 
Mouse 
Clicks 

Time 
(min.) 

Key-
strokes 

Mouse 
Clicks 

Time 
(min.) 

Key-
strokes 

Mouse 
Clicks 

Time  

1 205 635 28.80 0 14 1.37 100% 97.80% 95.25% 
2 208 900 41.22 10 16 1.52 95.19% 98.22% 96.32% 
3 404 641 46.50 16 19 2.10 96.04% 97.04% 95.48% 
Average 272.3 725.3 38.8 8.7 16.3 1.7 97.08% 97.68% 95.69% 

 

5.2.4 Task 4: Door fasteners   

Finally, the test subject must add details for fasteners.  For the traditional method, 

the user is only required to create five holes on one side of the interstage cutout and the 

mating holes for the door frame.  The thesis method still creates the complete set of holes 
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for all three components, so the data listed in Table 5-4 represents the results after having 

been multiplied by eight to compensate for this difference. 

Table 5-4: Task 4 completion statistics 

Traditional Method Proposed Method Percent Difference Test 
Subject Key-

strokes 
Mouse 
Clicks 

Time 
(min.) 

Key-
strokes 

Mouse 
Clicks 

Time 
(min.) 

Key-
strokes 

Mouse 
Clicks 

Time  

1 456 784 42.4 0 13 0.87 100% 98.34% 97.96% 
2 312 736 38.53 0 14 1.17 100% 98.10% 96.97% 
3 240 672 37.07 0 15 1.30 100% 97.77% 96.49% 
Average 336 730.7 39.3 0 14 1.11 100% 98.07% 97.14% 

 

5.2.5 Entire assembly 

The results from the three test subjects can be used to extrapolate an estimate for 

the effort required to create the parametric models for an entire interstage assembly.  The 

layout of a fictitious interstage assembly is depicted in Figure 5-1. It includes four 

interfaces, five components, and will have two access doors.  Table 5-5 lists the estimated 

average results for this configuration based on these assumptions:   

1. Creating the four interfaces will take twice as much effort as measured in Task 1. 

2. Inserting the detail features on all five components will require five times the 

effort measured in Task 2. 

3. Inserting the doors and their fasteners will require twice the effort measured in 

Tasks 3 and 4. 
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Figure 5-1 Interstage assembly configuration 

Table 5-5: Estimated results for entire assembly 

 Key-strokes Mouse Clicks Time (min.) 
Traditional Method 3885.0 5539.3 313.0 
Proposed Method 168.7 300.3 17.4 
Percent Difference 95.66% 94.58% 94.45% 

 

5.3 Openness of design 

There are several major aspects of the application that allow flexibility in the 

design.  The InterfaceManager is the primary one.  It allows the engineer to define 

any number of component interfaces, and provides a substantial number of interface 

types to choose from as mentioned in section 5.1.  It also lets him/her create an assembly 

with any number of components.  Another key to providing openness is the fact that the 

designer creates the component cross section sketches.  This permits virtually unlimited 
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variations in the design of the part bodies.  This is especially valuable for the actual 

interstage component since many different types of cross sections are used. 

The InsertDoor operation also gives the designer a large amount of freedom.  

Since the cutout region is also sketched by the engineer, the shape of the door is almost 

entirely up to him or her.  The only restrictions are that the cutout sketch be a closed loop 

with no convex portions.  The disadvantage of the current implementation of the 

InsertDoor operation is that the topology of the interstage stiffening cross section is hard-

coded.  Additional development should focus on allowing a more flexible definition 

method for the stiffening cross section.   

Overall, the fact that the models are entirely parametric means that any of the 

dimensions and expressions can be changed to suit the specific needs of the designer.  

Therefore, even the portions of the geometric design that are hard coded into the 

application, such as the flange length proportions or the chamfer and fillet sizes, can be 

modified after running the application. 

To quantify the level of openness provided by the application, each of the primary 

decisions which must be made by the designer has been assigned a score from 0 to 3 with 

the following significances. 

0. The designer cannot make changes to the decision  

1. The designer can choose from a finite set of options 

2. The designer can modify the parameters of the decision  

3. The designer can change anything about the decision within normal design 

limits 

Table 5-6 lists descriptions of each of the primary decisions and its openness score. 
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Table 5-6: Openness scores for primary design decisions 

Score

3
3
3
2

1
3
2
1
2

3
3
3
1
1

2
1
2

Decision
Assembly Layout

number of components
topology of each part’s cross section
Dimensions of each part’s cross section
Chamfers and fillets

Joining method for each part-to-part interface
Interface type
Interface position
fastener size
fastener pattern
dimensions of the joint

Doors
Number of doors
Door shape and size
Door position

Fastener pattern
Dimensions of the joint

Stiffening cross section
Door frame cross section

Joining methods for door components
Fastener size

 

Several design decisions received low openness scores.  It would be possible to 

increase the low scores with further development and research.  Several suggestions for 

such future work will be given in Chapter 6. 

5.4 Discussion of results 

The primary difficulty in creating parametric design tools is balancing the 

tradeoffs between speed and design freedom.  The results presented in Chapter 5 have 

shown that the methods developed in this thesis are able to decrease the required time and 

effort by more than 90% while still leaving a large majority of the primary decisions open 

to the designer.   

Although these methods have been developed specifically for designing rocket 

interstage assemblies, they have potential application in any assembly dominated by 
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similarly oriented 2½ dimensional components, i.e. uniform cross sections that are either 

extruded in the same direction or revolved around the same axis.  The door insertion and 

fastener methods can also be applied in other disciplines such as pressure vessel design.  

A primary advantage of these high-level programmatic operations over other 

design automation tools, such as UDFs, is that these methods are able to operate on 

multiple components. Therefore, they can create the inter-part associativities and 

expressions that are necessary in parametric assembly modeling.  In addition, they are 

able to generate much larger sets of geometry since UDFs cannot use their own entities as 

inputs to their other features e.g. A UDF would not be able to contain an offset surface 

feature and a feature that trims said offset surface, since the user would not be able to 

identify the input surface to the trim feature. 

Other important advantages of the methods presented here are that they drastically 

reduce user error and can be executed by novice engineers, or even technicians.  During 

testing, many of the manual operations had to be repeated or corrected because the wrong 

input geometry was selected, or because input values were wrong.  Programmatic 

methods do not have these problems.  There were still some user errors while testing the 

programmatic methods, but they were usually due to unclear instructions and were much 

less frequent.   

One disadvantage of the author’s methods, is that they do not currently provide 

special functionality for updating the geometry after the model is changed.  For most of 

the geometry, this is handled automatically because standard NX features are used.  

However for features that depend on custom calculations, such as the smart point features 

that are inserted based on the curve lengths, the standard NX update algorithms would 
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not suffice.  If the curve lengths change, the number of smart points would not.  Custom 

updating routines would also be able to ensure that offset directions do not flip, and that 

the trimming regions remain correct.   

The author’s methods also lack special deleting functionality.  The operations can 

be undone immediately after execution, but if a user wanted to remove a door later in the 

design process, for example, he or she would have to delete all of the components, 

features, and expressions manually.  This would be tedious and error-prone. 
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6 Conclusions 

The objectives of this thesis were to show that high-level, product type-specific 

operations can accelerate the design of a wide range of rocket interstage components and 

assemblies and that these operations will decrease the design time without impeding 

innovation.   

In Chapter 3, a method was developed to define the assembly layout using a 

framework of C++ classes and user interfaces called the InterfaceManager.  While 

this theoretical framework was capable of supporting any assembly layout, the 

framework that was implemented in Chapter 4 was limited to eight types of interfaces.  

Chapter 5 demonstrated that the InterfaceManager still supported a very large 

number of interface combinations even with these limitations and was able to create the 

interfaces around 90% faster than by using the traditional method.  From these results we 

can conclude that product type-specific operations can greatly reduce modeling time of 

assembly layouts and can be flexible enough to support wide spectrums of designs.                    

Chapter 3 also discussed methods for creating the detailed features on each part in 

the assembly including the revolve features, chamfers, fillets, and hole patterns.  These 

methods, as developed in Chapter 4, resulted in more than a 98% reduction of modeling 

time and effort.  Since the inputs for these detail features were defined by the 

InterfaceManager, no effort was required of the user to detail the parts.  These 
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results prove that CAD design can be streamlined extensively using high-level 

operations. 

The methods from Chapter 3 that add access doors with fasteners to the interstage 

were also successfully implemented in Chapter 4.  After analyzing their performance, 

Chapter 5 proved that these methods also resulted in excellent time savings while leaving 

most of the major design decisions open to innovation. 

To summarize, this thesis has shown that CAD modeling can be extremely 

streamlined through the use of high-level, product type-specific operations.  It has shown 

that such high-level operations can work for a wide range of components and assemblies 

and can be created in a way that leaves the majority of the primary design decisions open 

to the user.  The methods developed in this thesis have also reduced modeling time and 

effort by at least about 90%.  Recommendations will now be given for researchers 

interested in continuing similar work.   

6.1 Recommendations 

The results presented in Chapter 5 show that these methods have excellent 

potential but there are still many improvements that can be made to increase the scope of 

supported designs and the functionality of the operations.  Implementing the following 

recommendations would increase the openness scores as discussed in section 5.3.  

The largest limitation of the current method is that it currently only applies to 

revolved parts.  The InterfaceManager framework should be extended for use with 

extruded parts which also have 2 ½ dimensions.  Extending the methods to fully three 

dimensional products would require much more research but would be very valuable.  
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The InterfaceManager should also be extended to include additional interface 

types.  For interstage assemblies alone, there are several more interfaces that are 

commonly used, such as manacle joints and weldments.  

Along with these improvements to the InterfaceManager, there are several 

areas of needed improvement to the InsertDoor operations. Supporting 

extruded parts would require the InsertDoor operation to work on any input surface.  

This improvement would be trivial.  Research should also be focused on developing a 

more general method for defining the stiffening cross section around the door cutout.  If 

the operation required the user to create a sketch of the desired cross section, it could 

investigate the sketch geometry and determine which offset features would be needed as 

well as their distances.  It would also be able to determine the correct trimming features.  

Most of the operations could be improved if further researchers developed special 

updating routines and deletion routines. The DoorFasteners operation could update 

the fastener patterns when the door size changes.  The InsertDoor operation could 

ensure correct offset directions and trimming regions during update cycles.  A 

DeleteDoor operation would be very useful during the design cycle so that users 

would not have to manually delete every part, feature and expression.   
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