
www.manaraa.com

Brigham Young University Brigham Young University

BYU ScholarsArchive BYU ScholarsArchive

Theses and Dissertations

2008-08-12

High-level, Product Type-specific Programmatic Operations for High-level, Product Type-specific Programmatic Operations for

Streamlining Associative Computer-aided Design Streamlining Associative Computer-aided Design

Nathan W. Scott
Brigham Young University - Provo

Follow this and additional works at: https://scholarsarchive.byu.edu/etd

 Part of the Mechanical Engineering Commons

BYU ScholarsArchive Citation BYU ScholarsArchive Citation
Scott, Nathan W., "High-level, Product Type-specific Programmatic Operations for Streamlining
Associative Computer-aided Design" (2008). Theses and Dissertations. 1833.
https://scholarsarchive.byu.edu/etd/1833

This Thesis is brought to you for free and open access by BYU ScholarsArchive. It has been accepted for inclusion
in Theses and Dissertations by an authorized administrator of BYU ScholarsArchive. For more information, please
contact scholarsarchive@byu.edu, ellen_amatangelo@byu.edu.

http://home.byu.edu/home/
http://home.byu.edu/home/
https://scholarsarchive.byu.edu/
https://scholarsarchive.byu.edu/etd
https://scholarsarchive.byu.edu/etd?utm_source=scholarsarchive.byu.edu%2Fetd%2F1833&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/293?utm_source=scholarsarchive.byu.edu%2Fetd%2F1833&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsarchive.byu.edu/etd/1833?utm_source=scholarsarchive.byu.edu%2Fetd%2F1833&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarsarchive@byu.edu,%20ellen_amatangelo@byu.edu

www.manaraa.com

HIGH-LEVEL, PRODUCT TYPE-SPECIFIC PROGRAMMATIC

OPERATIONS FOR STREAMLINING ASSOCIATIVE

COMPUTER-AIDED DESIGN

by

Nathan W Scott

A thesis submitted to the faculty of

Brigham Young University

in partial fulfillment of the requirements for the degree of

Master of Science

Department of Mechanical Engineering

Brigham Young University

December 2008

www.manaraa.com

Copyright © 2008 Nathan W Scott

All Rights Reserved

www.manaraa.com

BRIGHAM YOUNG UNIVERSITY

GRADUATE COMMITTEE APPROVAL

of a thesis submitted by

Nathan W Scott

This thesis has been read by each member of the following graduate committee and by
majority vote has been found to be satisfactory.

Date C. Greg Jensen, Chair

Date W. Edward Red

Date Christopher A. Mattson

www.manaraa.com

BRIGHAM YOUNG UNIVERSITY

As chair of the candidate’s graduate committee, I have read the thesis of Nathan W Scott
in its final form and have found that (1) its format, citations, and bibliographical style are
consistent and acceptable and fulfill university and department style requirements; (2) its
illustrative materials including figures, tables, and charts are in place; and (3) the final
manuscript is satisfactory to the graduate committee and is ready for submission to the
university library.

Date C. Greg Jensen

Chair, Graduate Committee

Accepted for the Department

 Larry L. Howell
Graduate Coordinator

Accepted for the College

 Alan R. Parkinson
Dean, Ira A. Fulton College of Engineering
and Technology

www.manaraa.com

ABSTRACT

HIGH-LEVEL, PRODUCT TYPE-SPECIFIC, PROGRAMMATIC

OPERATIONS FOR STREAMLINING ASSOCIATIVE

COMPUTER-AIDED DESIGN

Nathan W Scott

Department of Mechanical Engineering

Master of Science

Research in the field of Computer Aided Design (CAD) has long focused on

reducing the time and effort required of engineers to define three dimensional digital

product models. Parametric, feature-based modeling with inter-part associativity allows

complex assembly designs to be defined and re-defined while maintaining the vital part-

to-part interface relationships. The top-down modeling method which uses assembly

level control structures to drive child level geometry has proved valuable in maintaining

these interfaces. Creating robust parametric models like these, however, is very time

consuming especially since there can be hundreds of features and thousands of

mathematical expressions to create. Even if combinations of low-level features, known

as User-Defined Features (UDFs), are used, this process still involves inserting individual

features into individual components and creating all of the inter-part associativities by

www.manaraa.com

hand. This thesis shows that programmatic operations designed for a specific product

type can streamline the assembly and component-level design process much further

because a single programmatic operation can create an unlimited number of low-level

features, modify geometry in multiple components, create new components, establish

inter-part expressions, and define inter-part geometry links. Results from user testing

show that a set of high-level programmatic operations can offer savings in time and effort

of over 90% and can be general enough to support user-specified interface layouts and

component cross sections while leaving the majority of the primary design decisions open

to the engineer.

www.manaraa.com

ACKNOWLEDGMENTS

I would like to thank Dr. Greg Jensen for his encouragement and advice and Dr.

Ed Red and Dr. Christopher Mattson for their input. I thank my wife, Rebecca, for the

sacrifices she has made to help me succeed. I also acknowledge Jesse Peterson, Jason

Hamburg, and Dr. Angela Trego for their assistance.

www.manaraa.com

 ix

TABLE OF CONTENTS

LIST OF TABLES ... xiii

LIST OF FIGURES .. xv

1 Introduction... 1

1.1 Problem statement... 1

1.2 Thesis objective .. 2

1.3 Delimitation of the problem.. 3

1.4 Document organization... 4

2 Literature Review ... 5

2.1 Definitions .. 5

2.2 Parametric modeling ... 7

2.3 High level features .. 8

2.4 Product specific design applications... 9

2.5 Associativity ... 11

2.5.1 Top-Down modeling method.. 11

2.5.2 Assembly features ... 12

3 Methods.. 15

3.1 Overall method for rocket interstage design automation.................................. 15

3.2 Operation 1: control structure, part ownership, geometric links 17

3.2.1 Application architecture.. 18

3.2.2 Application procedure... 19

www.manaraa.com

 x

3.2.3 Scope... 21

3.3 Operation 2: Cross sections, solids, detail features .. 21

3.3.1 Step 1: Part cross sections... 21

3.3.2 Step 2: Solids .. 22

3.3.3 Step 3: Blends and chamfers... 22

3.3.4 Step 4: Fastener detail features ... 24

3.4 Operation 3: Doors, door frames, and interstage alterations 25

3.4.1 Operation 3a: Component bodies.. 25

3.4.2 Operation 3b: Door fastener holes .. 31

4 Implementation ... 33

4.1 Operation 1: Interface manager .. 33

4.1.1 Joint object class ... 34

4.1.2 Conical joint object class .. 38

4.1.3 Joint derived part class.. 40

4.1.4 GUI ... 43

4.2 Operation 2: Detail features.. 49

4.2.1 Revolve ... 50

4.2.2 Detail features ... 50

4.2.3 Extrude.. 52

4.2.4 Pattern ... 53

4.3 Operation 3: Insert door.. 55

4.3.1 Operation 3a: Components ... 55

4.3.2 Operation 3b: Door fasteners .. 72

5 Results .. 81

5.1 Range of supported designs .. 81

www.manaraa.com

 xi

5.2 Time savings ... 83

5.2.1 Task 1: Interface manager... 84

5.2.2 Task 2: Detail features .. 84

5.2.3 Task 3: Insert door .. 85

5.2.4 Task 4: Door fasteners .. 85

5.2.5 Entire assembly... 86

5.3 Openness of design ... 87

5.4 Discussion of results ... 89

6 Conclusions.. 93

6.1 Recommendations... 94

7 References .. 97

www.manaraa.com

www.manaraa.com

 xiii

LIST OF TABLES

Table 4-1: Joint orientations and part positions...40

Table 5-1: Task 1 completion statistics ...84

Table 5-2: Task 2 completion statistics ...85

Table 5-3: Task 3 completion statistics ...85

Table 5-4: Task 4 completion statistics ...86

Table 5-5: Estimated results for entire assembly...87

Table 5-6: Openness scores for primary design decisions...89

www.manaraa.com

www.manaraa.com

 xv

LIST OF FIGURES

Figure 3-1: Assembly part notation ...16

Figure 3-2: Key terms ..17

Figure 3-3: C++ class architecture...19

Figure 3-4: Completion of operation 1 showing the sketch of one part20

Figure 3-5: Completion of operation 2 step 1..22

Figure 3-6: Operation 2 step 3 complete..23

Figure 3-7: Operation 2 step 4 complete..24

Figure 3-8: Inputs required for operation 3..26

Figure 3-9: Blended extrusion of b2SCUT ...26

Figure 3-10: Stiffening cross section with offset surface markers ..27

Figure 3-11: Input surfaces and offset surfaces ...28

Figure 3-12: A swept surface and a trimmed surface on b3BTH...29

Figure 3-13: Final interstage cross section around door cutout...30

Figure 4-1: Custom buttons for executing automated operations..33

Figure 4-2: Control sketch displaying dimensions and expressions for a JointObject
J0. ...35

Figure 4-3: JointObject control sketch and hole control geometry................................37

Figure 4-4: ConicalJointObject control sketch and hole control geometry...............39

Figure 4-5: Interface manager GUI..43

Figure 4-6: GUI callbacks..45

Figure 4-7: One component cross section..49

Figure 4-8: Fillet and chamfer rules...50

www.manaraa.com

 xvi

Figure 4-9: Door definition GUI..56

Figure 4-10: Inputs and results of swept surface routine..59

Figure 4-11: The interstage body (partially transparent) and the stiffening body before
trimming...62

Figure 4-12: The trimmed interstage body and the stiffening body62

Figure 4-13: United interstage body and stiffening body ..63

Figure 4-14: Wave linked faces in the door frame ..64

Figure 4-15: Frame offset surfaces ...64

Figure 4-16: Large inward facing offsets need face blend feature ..65

Figure 4-17: Face blend example..68

Figure 4-18: Trimmed surfaces on frame ..68

Figure 4-19: Door frame surfaces sewn into solid body..69

Figure 4-20 Top view of stiffened load-bearing door configuration70

Figure 4-21: Section view of stiffened load-bearing door configuration71

Figure 4-22: Top view of un-stiffened, non load-bearing door configuration.......................71

Figure 4-23 Section view of un-stiffened, non-load bearing door configuration72

Figure 4-24: Top view of fastener details for a stiffened, load-bearing configuration..........78

Figure 4-25: Section view of fastener details for a stiffened, load-bearing configuration79

Figure 4-26: Top view of fastener details for an un-stiffened, non load-bearing
configuration. ...79

Figure 4-27: Section view of fastener details for an un-stiffened, non load-bearing
configuration ..80

Figure 5-1 Interstage assembly configuration..87

www.manaraa.com

 1

1 Introduction

The parametric, feature-based functionality within computer aided design (CAD)

applications has increased engineering efficiency dramatically [Anderl, 1995 and

Pritchard, 1996]. Well developed parametric models can be reused to produce many

similar designs, and can simplify the process of incorporating design changes [Black,

1991 and Shaw, 1995]. In addition, associativity capabilities within modern CAD

applications allow these parametric models to maintain relationships between features

and components [Venkataraman, 2001] which extends the benefits to models of entire

assemblies. There are also programming and scripting tools available that enable

advanced users to programmatically perform most of the same interactive functions.

1.1 Problem statement

Creating robust parametric models is very time consuming and “this level of skill

can take years of training and experience to acquire” [Delap, 2006 and Hoffmann, 2001].

Parametric models of assemblies are especially dificult and tedius to model because of

the many inter-part relationships that must remain associative. Producing complex part

models is less tedious and time-consuming when higher level features – features that

combine several low-level features – are employed rather than relying on standard low-

level features such as holes, ribs, and slots [Hoffmann, 1998 and Mosca, 2001]. Modern

www.manaraa.com

 2

CAD applications offer some high-level features for certain product types as well as User

Defined Features (UDFs) which allow users to specify custom combinations of low-level

features. These approaches to modeling assemblies are still restricted however because

they do not have any inter-part associativity or intelligence capabilities and can only

combine a limited number of low-level features. They require users to create the inter-

part expressions and geometry links by hand and do not allow the user to operate on

multiple components at once or to create new components as part of the operation.

1.2 Thesis objective

It is my objective to show how the current modeling practices described above

can be streamlined further through the use of product type-specific programmatic

operations that would combine the benefits of UDFs and inter-part associativity and

would function at a level much higher than inserting single features into individual

components. This thesis defines a programmatic operation as one that can create an

unlimited number of low-level features, modify geometry in multiple components, create

new components, establish inter-part expressions, and create inter-part geometry links.

Since products of a similar type have similar primary and secondary features,

programmatic operations can be written that can create most, if not all, of the CAD

geometry necessary to define a product of a certain type. This will in affect reduce the

time consuming modeling element to the designer’s decision making time.

The specific test case that will be used to demonstrate and validate this research is

the interstage sub-assembly on solid motor rockets. This particular assembly is a good

candidate for this research because it is used repeatedly on a wide range of rockets and

www.manaraa.com

 3

because its geometry is relatively simple. This research will therefore focus on the

incorporation of rocket interstage-specific design operations into an application that will

interoperate with Siemens NX 5. The goal of this study is to develop a set of proof-of-

concept applications that will streamline the design of rocket assemblies and parts. The

objectives of this thesis are:

1. Create a framework of intelligent, high-level, programmatic operations that can be

used to quickly design a wide range of components and assemblies.

2. Implement this framework specifically for rocket interstage assemblies and

components.

3. Show that the rocket interstage implementation of this framework decreases the

design time without impeding innovation.

1.3 Delimitation of the problem

The applications developed to prove the methodology will only provide a

representative number of possible operations in the design of rocket interstages. It is

assumed that the joining method between parts will be bolted flanges. Other joining

methods and are used in designing interstages, but it is not necessary to provide an

exhaustive collection of operations to demonstrate the method. In addition, the

implementation will be limited to a specific CAD application, NX 5, but the proposed

methods will work with any application that has a sufficiently complete API library

available to the developer. The application is not intended for public release. It is

intended to prove the concept; however, if engineers and designers of rockets were to

www.manaraa.com

 4

apply their rules, heuristics and knowledge to this rocket interstage framework,

significant time-savings would result.

1.4 Document organization

Now that the problem has been described and the research objectives have been

defined, chapter two will provide a review of relevant literature upon which this research

has been founded. It will also describe similar research that has been conducted by

others. Chapter three will outline and describe the methodologies/architecture used and

created to reach the thesis objectives and chapter four will provide details on how these

methods and the architected framework were implemented for the specific case study.

Chapter five will then present the results of the case study which predict time savings of

more than 90% . Finally, chapter six will conclude that high-level, product type-specific

operations can, in fact, streamline the design process without impeding innovation.

www.manaraa.com

 5

2 Literature Review

A wide range of research has been performed in the field of computer aided

design and especially in developing methods to streamline the product development

process. This chapter describes those contributions and how they have impacted this

research. The specific topics that will be discussed are:

1. Parametric modeling

2. High level features

3. Product-specific design applications

4. Associativity

First, however, it is necessary to provide definitions and descriptions of key terms

and concepts which are crucial to understanding computer aided design and this thesis.

2.1 Definitions

These definitions and descriptions of terms are obtained from [Zeid, 2005]. If the

reader seeks further background and clarification on these concepts he or she should refer

to said reference.

Solid Model: A solid model is a “complete, valid, and unambiguous representation of an

object.” Complete means that any point in space can be classified as being inside,

outside, or on the boundary of the object. Valid means there are no dangling

www.manaraa.com

 6

edges or faces. Unambiguous means there is one and only one interpretation of

the model.

Geometry and Topology: The geometry of a solid model is the metric information of the

model’s elements such as the lengths of lines, radii of arcs and depths of holes.

Topology is the connectivity and associativity of the entities. For example, Line 1

shares a vertex with Line 2 and Arc 1. A solid model must store both the

geometry and topology of its entities to satisfy the completeness and unambiguity

requirements.

Set Theory: Set theory is the mathematical representation of solids. A solid is defined by

“a point set S in 3D Euclidean space (E3).” The set S is the union of its interior

(iS) and its boundary (bS). The subset of all points on the exterior of S is called

the complement of S (cS).

Parametric: Parametric modeling refers to the ability to change the values associated

with geometry which results in a new definition of the solid model.

Variable, dimension, expression, equation: A variable is a name that can take on multiple

values one at a time. A dimension is a variable tied to specific geometry usually

in a sketch. An expression is a collection of variables and dimension names

combined by mathematical operators. An equation is a statement containing a

dimension name or variable followed by an equals sign followed by an

expression.

Constraint: A topological condition between entities in a solid model. For example, a

coincidence constraint ensures that two entities have the same coordinates in

space. A perpendicular constraint makes the angle between two lines 90 degrees.

www.manaraa.com

 7

Parameter: Variables and dimensions are both referred to as parameters.

Feature: According to Zeid a feature “is defined as a shape and an operation to build

parts. The shape is a two-dimensional sketch…the operation is an activity that

converts the sketch into a three-dimensional shape. Sample operations include

extrude, revolve, fillet, shell, chamfer, and sweep.” This thesis uses a broader

definition which includes the possibility of performing multiple operations on

shapes as a single feature.

Associativity: Associativity means providing perpetual links between geometry, and

expressions within multiple components of an assembly.

2.2 Parametric modeling

This thesis will provide superior methods of defining geometry and topology of

product models. The fundamental CAD methods discussed in section 2.2 form the

backbone of this research and the foundation for much of the research that will be

discussed in subsequent sections.

Improvements to CAD have focused on reducing the number of user operations

necessary to define the topology and geometry of products. Parametric modeling and

relating parameters with equations are fundamental methods of reducing operations

[Lendermann, 2005]. Once a parametric model is created, products with similar topology

can be modeled simply by updating the key driving parameter values.

Feature based design is another “one of the fundamental design paradigms of

CAD systems” [Hoffmann,1998]. It allows the user to define and modify the model at a

higher level than the point and curve entities. Even though feature-based parametric

www.manaraa.com

 8

modeling increases the efficiency of CAD design, complex parts may require hundreds of

features and thousands of parameters and so more advanced methods have been

developed that modify geometry at an even higher level [Elliott, 2004].

2.3 High level features

After the groundwork for feature based modeling was laid, it was determined that

“to devise a universal set of features would lead to a potentially unmanageable number of

features that a CAD system might be asked to provide” [Hoffmann, 1998]. Because of

this, several research teams set out to “provide CAD systems with a basic mechanism to

define features that fit the end user needs” [Hoffmann, 1998; Bidarra, 1998; Shaw, 1994;

Tang, 2001]. These are referred to as User-Defined Features (UDFs). They work by

allowing the user to define a set of standard, low level features that will be grouped

together. For example, a sketch, an extrusion, and a corner blend feature can be grouped

into a UDF called a boss. UDFs also allow the designer to limit which expressions will

be available to the end user to minimize the number of inputs required and to prevent

important parametric relations from being altered.

Many designers have achieved significant time savings by using UDFs, such as

Bruno Lamarche and Louis Rivest [2007] who reported an 86% time improvement. The

UDF they created added lightening pockets to an aircraft skin panel between any given

set of stringers and frames.

Several CAD vendors also offer higher level design features as standard features.

In the 2006 release of SolidWorks, Dassault Systemes “introduced a number of features

designed to assist in building plastic part features” [Jankowski, 2005]. Among the new

www.manaraa.com

 9

features were a “Mounting Boss”, “Snap Hook”, and a “Snap Hook Groove.” Most CAD

vendors also provide optional features for sheet metal design and wiring design including

Siemens’ NX, Dassault Systemes’ CATIA, and Parametric Technology Corporation’s

Pro/Engineer.

The disadvantages of the current high-level features are that they cannot create the

interpart associativities in an assembly, and can only combine a limited number of low-

level features. This thesis builds upon the discussed methods of using high-level sets of

features to minimize the effort required to define the model. However, the programmatic

operations of this thesis are able to operate on a much higher level than inserting

individual features into single components. Each operation can create large sets of

features in multiple parts as well as the inter-part expressions and geometry links needed

to maintain associativity. The proposed method establishes a strategic set of high-level

feature operations that are tailored to meet the needs of a specific product type.

2.4 Product specific design applications

Other researchers have also found it useful to develop methods that are tailored to

a certain product type.

Huh and Kim [Huh, 1991] developed the “RIBBER” application for adding

supplementary features like ribs and bosses to plastic injection molded parts. They used

Pro/Engineer as the geometric modeler and RIBBER synthesized the necessary

parameters for the supplementary features based on manufacturing, molding, and strength

information.

www.manaraa.com

 10

Ong and Lee [Ong, 1995] developed CADFEED, a CAD-based applications to

automate the design of the feed system for plastic injection molds. Parts were designed

using a features database of common plastic injection molded part bases and “add-on”

features then the application found appropriate locations and sizes for various types of

gates, sprues and runners.

 Another product specific design application was developed by Delap, Hogge, and

Jensen [Delap, 2006]. Using the NX application programming interface (API) they

developed an application for preliminary design and optimization of jet engine flow

paths. They created parametric models programmatically and interfaced the CAD

geometry with simple analysis codes and optimization routines.

In a joint project between the Institute of Product Engineering at the University of

Duisburg-Essen and Siemens, it was discovered that the design of shafts and impellers of

compressors was effectively automated by integrating knowledge directly into the

definition of UDFs using NX’s knowledge based engineering (KBE) software

(Knowledge Fusion). By using these “modular” knowledgeable UDFs, “one can

renounce an ‘omniscient’ KBE application … that would lead to a highly component

specific application” [Danjou, 2008]. The definition of the components is stored in data

files and the KBE application “imports the data file, analyzes the content and distributes

the input parameters to all relevant UDFs” [Danjou, 2008]. This thesis also applies the

idea of embedding intelligence into the feature operations to automate much of the design

process while remaining somewhat flexible.

www.manaraa.com

 11

2.5 Associativity

Another area of research that has contributed to CAD’s overall efficiency is the

idea of associativity. When a design change is made in one part of the assembly, related

components can also update automatically through the use of inter-part expressions or

linked geometry. This capability within CAD has led to increased time savings due to the

reduction of operations needed to update the design. It has also led to additional

robustness in parametric modeling because once the associativity is established, mating

errors are significantly reduced [Emch, 2002]. There is still ample room for

improvement, however, because learning to create these “complex parametric models that

are very robust…can take years of training and experience to acquire” [Delap, 2006].

Lendermann [2005] explains that “associativity requires a clearly defined data flow. The

more associativities exist in a geometrical model, the more vulnerable it gets to circular

references…” These difficulties associated with creating associative parametric models

have been addressed in several ways including the method of top-down modeling, and the

strategy of using custom defined assembly features to handle the associative aspects of

modeling.

2.5.1 Top-Down modeling method

Lendermann [2005] explains that the problem of circular references mentioned

previously “can be solved by hierarchical structures …a superior component could

contain the information of the [sub-components].” This approach is known as the top-

down modeling method. It is very useful for maintaining associativity in an assembly as

has been noted in numerous studies.

www.manaraa.com

 12

Francesco Mosca [2001] used this approach to define “control structures” for gear

box design and project management. “Such a way to manage a project (critical data

organized in a control structure),” he said, “leads to a simple modifying of the product or

to a redesign without remodeling the geometry but regenerating it.”

Aircraft body design was also significantly improved using the top-down

approach [Emch, 2002]. Emch explains that “another function of the Control Structure is

the definition of interfaces between subsystems and between major elements within the

subsystems themselves” and that “the advantage to the design process is the ability to

greatly shorten development cycles while attaining aggressive performance goals.”

The top-down modeling method and its use in maintaining correct interface

definitions between parts is a fundamental strategy employed by this thesis. This thesis

also presents methods for automating the generation of assembly control structures and

defining the geometry links between the control structure and the component level parts.

2.5.2 Assembly features

Ma [2007] introduced associative assembly features (AAF) and a sub-category of

AAFs called assembly design features as a higher level method of doing assembly level

associative design. An example of such an assembly design feature is a guide pin pattern

on a plastic injection mould base. The feature resides in the top level assembly file and

includes a parametric expression-based representation of the pattern that “contains rules

to determine the number of pins required for a specific mould size.” The sub-

components in the assembly inherit these parameters and “such links are retrieved,

managed and saved via a set of feature object modification methods” which are part of

the “feature manager.” The user selects the desired type and size of mold assembly from

www.manaraa.com

 13

a graphical user interface (GUI) and “an instance of the assembly is inserted into the

design model.”

The author’s method will similarly create linked expressions and linked geometry

between parts in the assembly. The superiority of the author’s method, however, is that

there will not be pre-determined assembly configurations loaded from a library. Instead,

the user defines custom assembly layouts through a GUI and the application creates the

configurations automatically.

www.manaraa.com

 14

www.manaraa.com

 15

3 Methods

The methods discussed in this chapter represent a set of automated steps that can

be used to design a specific type of product. The objective of this thesis is to prove that

such a set of programmatic operations can reduce the time and expertise required for

defining the geometry, topology, and associativity of assemblies. Although these

methods are specifically chosen for their applicability to a specific product, they will be

presented with as much generality as possible to enable their extension into other product

types. These methods were developed using the NX Open API in C++ and this thesis

may use language specific to that programming and modeling environment; however, the

content of the methods should be general enough to apply to any similarly capable

environment.

3.1 Overall method for design automation

The steps used in automating the design of assemblies and components employ

the techniques discussed in Chapter 2, especially the control structure-based top down

method. The steps can be grouped into three key operations.

Operation 1: Define the control structure and part ownership and create the

geometric links between the parents and children for the primary design features.

www.manaraa.com

 16

Operation 2: Define the cross sections of children level parts, make them into

solids, and add detail features such as chamfers, blend radii, and fastener holes.

Operation 3: Add secondary design features such as access doors.

For the remainder of this chapter and in subsequent chapters, A will represent an

assembly-type part (a parent to at least one other part) and C will represent a component

type part (one having no children). The superscript of A or C will represent the

hierarchical level of the part and the subscript will represent its position relative to its

sibling parts, e.g. A2
1 is the first child of its parent and is a second level assembly, and C3

2

is the second child of it’s parent and is a third level component. No subscript will be

used when referring to the collection of all parts on a certain hierarchical level. This is

illustrated in Figure 3-1.

Figure 3-1: Assembly part notation

In addition, let ()Ο
Sk

 represent an operation on sketch geometry. The notation

from set theory for boundaries (bS) will be modified by a subscript 2 or 3 to distinguish

between two-dimensional boundaries b2 (sketch geometry) and three-dimensional

boundaries b3 (faces and edges of the solid). Figure 3-2 illustrates these terms as well as

other key terms that will be introduced in this chapter. b2C2 represents the two

A1

A2
1 C2

2 C2
3

C3
1 C3

2

www.manaraa.com

 17

dimensional boundary of a component. b3C2 represents the three dimensional boundary

of a component. Iij is a unit of the control structure which represents the interface

between components i and j. The clearance between components is denoted by ε and the

chain link symbol denotes the sketch constraints between Iij and b2C2. A1 is the top level

assembly that contains the control structure.

Figure 3-2: Key terms

3.2 Operation 1: control structure, part ownership, geometric links

The first operation helps the designer define the overall layout of the entire

assembly and automatically creates the associative links from the top level control

structure owned by A1 to its children (A2 and C2). The control structure can be

www.manaraa.com

 18

represented mathematically as the set of all points at which its children’s boundaries

(b2C2) are located within a given clearance of each other (ε). Let Iij denote the

intersection between components C2
i and C2

j.

I
ε

2
2

2
2 jiij CbCbI = (3-1)

Then A1 is the sum of all intersections between its n children.

∑∑
−

= +=

=
1

1 1

1
n

i

n

ij
ijIA (3-2)

See Figure 3-2 for illustrations of Iij, b2C2, ε, and A1.

When modeling assemblies, a designer will start with a hand drawing of the

overall layout and will therefore know by inspection, what the control structure needs to

look like. The automated method serves as a tool to quickly go from a hand drawn

assembly configuration to fully defined models with associativity.

3.2.1 Application architecture

The control structure is defined through a framework of C++ class objects (See

Figure 3-3 on page 19) which are instantiated based on user inputs from a graphical user

interface (GUI). The Interface Object class contains all the data needed to define the

geometry of one unit in the interface control structure (Iij). It contains the member

function ()ij
Sk

IΟ to create the Sketch control geometry, and the member function ()ij

f

Sk
IΟ

to create the fastener control geometry based, on the member variables. It also contains

the member function))(()(212
iij

Wl
iij CAICI →=Ο to Wave link a unit (Iij) of the control

www.manaraa.com

 19

structure from A1 into a child component C2
i. The member function ())(22

2 iiji
Sk

CICb =Ο

constrains the sketch geometry of the child part (b2C2
i) to its wave linked geometry

(Iij(C2
i)). The Interface Derived Part class contains a collection of interface objects as

well as the positions on each interface. It also has a function that calls each of its

interface objects’ functions.

Figure 3-3: C++ class architecture

3.2.2 Application procedure

After the data is collected from the GUI, the application automatically performs

the following steps associated with operation 1.

1. Create part files for A1, A2 , and C2.
2. Create control sketch in A1

Interface Object Class (Iij)
- Member variables
- Member functions

o MakeSketchControlGeometry(Member variables) ()ij
Sk

IΟ

o MakeFastenerControlGeometry(Member variables) ()ij

f

Sk
IΟ

o LinkChildToParent(Child))(2
iij

Wl
CI →Ο

o MakeChildGeometry(Child Position) ())()(21
iijij

Sk
CIAI →Ο

Interface Derived Part Class
- Member variables

o MyInterfaceObjects
o MyInterfacePositions

- Member functions
o SketchMyInterfaces(MyInterfaceObjects, MyInterfacePositions)

C++Architecture

www.manaraa.com

 20

a. Create and open sketch feature
b. For each interface object: call MakeControlGeometry(Data)
c. Close sketch feature

3. For each interface object: call MakeFastenerControlGeometry(Data)
4. For each Interface Derived Part Object

d. For each Interface Object in collection: call LinkChildToParent
e. Create and open sketch feature
f. Call SketchMyInterfaces(MyInterfaceObjects, MyInterfacePositions)
g. Close sketch feature

At this point each part will have the geometric links associated with the control

structure and will have sketch geometry that is constrained to the control structure. A

sample part sketch would look like that in Figure 3-4 where the blue lines represent the

wave linked control structures)(2
212 CI and)(2

223 CI , the orange lines represent the sketch

geometry (a subset of 2
22Cb), and the red points indicate constraints between the sketch

geometry and the linked control structures (Red chain links in Figure 3-2). The

component bodies are shown in gray for reference.

Figure 3-4: Completion of operation 1 showing the sketch of one part

www.manaraa.com

 21

3.2.3 Scope

This framework is general enough so that any interface type can be created by

defining a class that inherits from the Interface Object Class. Possible interface types that

may be created using this framework include a manacle joint, a weldment, or riveted

joints. For this thesis, one interface type has been implemented that represents a bolted

flange joint.

3.3 Operation 2: Cross sections, solids, detail features

The primary steps associated with Operation 2 are

1. Complete the part cross section sketches

2. Create solids from sketches

3. Apply blends and chamfers to edges

4. Create fastener hole features and patterns

3.3.1 Step 1: Part cross sections

The first step of Operation 2, completing the part cross section sketches, is

performed interactively by the designer. This is where the most variability exists in the

design and since interactive sketching is fairly easy and fast, it is more advantageous to

not hard code the creation of individual part sketches. The use of macros, or a library of

applications to generate common sketches would accelerate this step, but will be left for

future work. It should also be noted that if this step were automated, Operation 2 could

effectively be combined into Operation 1. This step completes the definition of 2
2Cb

which is illustrated in Figure 3-5.

www.manaraa.com

 22

Figure 3-5: Completion of operation 2 step 1

3.3.2 Step 2: Solids

It is programmatically trivial to create the solidifying feature from the cross

section sketches. As long as the sketch is named according to a pre-determined

convention it can be retrieved and either extruded or revolved. Certain interface types

may also contain parameters needed to perform this step such as an extrusion distance or

revolve angle and would therefore create the necessary variables as part of Operation 1.

In that case, the expressions would be named according to a convention and the

application for Operation 2 would reference the established expression name while

creating the feature.

3.3.3 Step 3: Blends and chamfers

The method for automating the creation of blends and chamfers is also based on

the interface types associated with the part. Blends and chamfers are commonly used to

facilitate the assembly of mating parts and are applied to easily predicted edges especially

when the interface type is known. The method used in this step of Operation 2 queries

www.manaraa.com

 23

the edges of each part and determines which edges intersect)(2
iij CI . Then based on the

rules for each interface type, blends and chamfers are applied. The rules for whether a

chamfer or a blend would be inserted are based on the specific vertex of the interface and

could reference either the expressions created by the interface object functions or values

retrieved from a GUI. The specific rules for the interface type implemented by this thesis

will be discussed in more detail in chapter 4, but here is an outline of the procedure.

Figure 3-6 illustrates the models after Step 3 has been completed. The yellow points

denote the key vertices to which chamfers or blends have been applied.

For all parts 12 ACi ∈ (0 ≤ i ≤ n)
For all edges)(2

ib Ce ∈ (0 ≤ b ≤ l)
For all key vertices)(2

, ikija CIv ∈ (0 ≤ a ≤ m)
Calculate minimum distance dmin between va and eb

If dmin < tolerance
Create Chamfer or Blend
Stop looping vertices

Figure 3-6: Operation 2 step 3 complete

www.manaraa.com

 24

3.3.4 Step 4: Fastener detail features

The method for adding fastener hole features is very similar to the blends and

chamfers method, except instead of cycling through the vertices associated with the

interface control geometry, it cycles through the fastener control geometry for each

interface object. Again, the hole features and pattern features reference the expressions

which were created by the Interface Object class member functions (Figure 3-3). The

algorithm goes as follows (See Figure 3-7 for results):

For all parts 12 ACi ∈ (0 ≤ i ≤ n)
For all center lines)(2

, ikija CIcL ∈ (0 ≤ a ≤ m)
Insert Hole Feature
Name Hole Feature according to convention

For all features)(2
ib Cf ∈ (0 ≤ b ≤ l)

If feature type and name match convention for an interface hole
Create hole pattern

Figure 3-7: Operation 2 step 4 complete

www.manaraa.com

 25

3.4 Operation 3: Doors, door frames, and interstage alterations

Although adding doors and door frames has fewer applications in other product

types, the methods presented are general enough to work on an arbitrary input surface,

and an arbitrary door shape and therefore are not restricted to cylindrical and conical

products or rectangular doors. This operation includes a method for creating and altering

the component bodies, as well as a method for creating the fastener holes needed to

assemble the components. If multiple doors are needed, this operation can be executed as

many times as required.

3.4.1 Operation 3a: Component bodies

When inserting a door into a component, it is often required to stiffen the area

surrounding the cutout. Step 1 of Operation 3a will outline the procedure for stiffening

the interstage cutout. Step 2 will outline the procedure for modeling the door frame and

Step 3 will present the method for modeling the door.

Step 1: Altering the interstage

There are two inputs required for this operation. The first is the inner most

surface of the part body to which the door and frame will be added. We will call this

SIML for “inner mold line”. The second input is a sketch of the cutout region. The sketch

must be created on a plane which is tangent to SIML at the center point of the cutout and

must contain a single closed loop with no convex curvature. The input sketch will be

called b2SCUT. The inputs are illustrated in Figure 3-8.

www.manaraa.com

 26

Figure 3-8: Inputs required for operation 3

First, let)(2 CUT
Ext

SbΟ be the symmetric Extrusion of b2SCUT normal to its sketch

plane and let ⎟
⎠
⎞

⎜
⎝
⎛= ΟΟ)(2 CUT

ExtBl
CUT SbS be the result of a Blending operation on

)(2 CUT
Ext

SbΟ which ensures a set of tangent continuous surfaces normal to SIML as

illustrated in Figure 3-9.

Figure 3-9: Blended extrusion of b2SCUT

www.manaraa.com

 27

Let OS be a set of surfaces offset from a set of surfaces S. The next step in the

procedure is to generate offsets from SIML and SCUT for each position on the cross section

of the thickening body (BTH). Figure 3-10 is an example of what a thickening cross

section might look like and where offset surfaces would be needed. The grey rectangle

represents the interstage body’s cross section before the cutout and thickening. The

dotted lines are the input surfaces and the solid black lines represent the new cross

section around the cutout region. The hatched grey area would be trimmed from the

current interstage body as will be discussed later. Figure 3-11 shows what the CAD

model would look like after applying the offsets.

Figure 3-10: Stiffening cross section with offset surface markers

The segments of the thickening cross section which are either parallel or

perpendicular to SIML at the cutout’s midplane can be produced by the operation

)(...1 n
Tr

SS →Ο which denotes a surface S Trimmed by n surfaces S1 through Sn. For

example, the outer most surface represented by the top horizontal line in Figure 3-10

would be produced by the operation),(322 CUTCUTIML
Tr

OOO →Ο . The result of each

trimming operation is a subset of b3BTH, the 3-dimensional boundary of the thickening

body (see Equation 3-3).

www.manaraa.com

 28

Figure 3-11: Input surfaces and offset surfaces

THCUTCUTIML
Tr

BbOOO
kji 3),(⊆→Ο (3-3)

The remaining surfaces of b3BTH are produced by sweeping operations

),,(21 ggc
Swp
Ο where a curve THBbc 2∈ is swept along closed guide curves represented

by CUTIMLi OOg ∩= . Figure 3-12 shows the result of this operation as well as the curve c

and guide curves g1 and g2. It also shows the outermost trimmed surface mentioned as an

example above.

www.manaraa.com

 29

Figure 3-12: A swept surface and a trimmed surface on b3BTH

Thus

∑ Ο∑ Ο ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∪⎟
⎠
⎞

⎜
⎝
⎛ →=),,(),(213 ggcSSSBb

Swp
kji

Tr
TH (3-4)

and Bth can be created by sewing together its boundary surfaces b3BTH.

 The final steps in altering the interstage part (equations 3-5 and 3-6) are trimming

the main interstage body (BINT) to remove the portions represented by grey hatching in

Figure 3-10 and then uniting BINT and Bth. The final cross section can be seen in Figure

3-13.

∏ →=
Tr

THINTINT BbBB)(3 (3-5)

THINTINT BBB ∪= (3-6)

www.manaraa.com

 30

Figure 3-13: Final interstage cross section around door cutout

Step 2: Create door frame

First, add a blank part file C3
2 (the frame) to A2 (the interstage sub-assembly) and

wave link SIML, SCUT, and OCUT1 from C3
1 (the interstage) to C3

2. We will refer to these

local copies as

),,(,, 3
211 COSSLOLSLS CUTCUTIML

Wl
CUTCUTIML →=Ο (3-7)

Next, create offsets from LSIML and LScut to maintain clearances.

CUTIML LSLSCUTIML OOCLCL ,, = (3-8)

Now create additional offset surfaces (O1..n) from CLIML and CLCUT as needed to

bound the door frame’s body (BFr) and trim CLIML , CLCUT and O1..n to produce b3BFr.

),(...1 CUTIML CLCLn OO = (3-9)

∑Ο=),,(...13 nCUTIML
Tr

Fr OCLCLBb (3-10)

 BFr can now be created by sewing its bounding surfaces b3BFr.

Step 3: Create door

The door is made by following the same process for creating the door frame

except wave linked surfaces will be extracted from both the interstage part and/or the

door frame part depending on the frame’s cross section.

www.manaraa.com

 31

Once the bodies have been modeled, the expressions should be created to dictate

the flange lengths and cutout sizes which will all be controlled by the offset distances.

The wave linked geometry will ensure that the interfaces mate correctly.

3.4.2 Operation 3b: Door fastener holes

There are two sets of fastener holes for each door on the interstage. One set to

fasten the frame to the interstage and one set to fasten the door to the frame. For each of

these sets, the following procedure will be followed. Inputs such as hole sizes and

distances from edges will be retrieved using either a GUI or existing expressions created

by Operation 3a.

First, create a set of offset curves (co) from the edge (e) of the mating flange on

the outer flange face (Sfl).

),(fl
o

o Sec Ο= (3-11)

Next, create evenly spaced point features (
npnt1pnt f...f) on each segment of co.

Equations 3-12 and 3-13 calculate the parameter value (u) of the curve at which to

place point i given n points on the curve. Equation 3-12 places points at the curve

endpoints, and Equation 3-13 excludes the endpoints.

)0(,
1

ni
n

iui <≤
−

= (3-12)

)0(,
1
1 ni

n
iui <≤
+
+

= (3-13)

Now, create a hole feature that references each of the n points (0…n) on each of

the m curves (0…m).

www.manaraa.com

 32

)),((
1

0

1

0
∑∑Ο
−

=

−

=

=
m

i

n

j
pnti

Holes
Holes j

fcf (3-14)

To create mating hole features on the second part, first wave link each point to the second

part. The local copy of the jth point on the ith curve is represented by

),(
jij pnti

Wl
pnt fclocalf Ο= . (3-15)

Next, insert a projection feature (fproj) of all of the local points onto the outer flange

surface (Sfl) with the operation

)),((
1

0

1

0
∑∑Ο
−

=

−

=

=
m

i

n

j
flpnt

P
proj Slocalff

ij
. (3-16)

Finally, create a hole feature of the projection feature points which uses inter-part

expressions to match the hole parameters.

)(proj
Holes

Holes flocalf Ο= (3-17)

www.manaraa.com

 33

4 Implementation

This chapter gives the details involved in implementing the methods described in

Chapter 3. The user can execute each of the operations from Chapter 3 by clicking on

custom buttons in the NX environment as illustrated in Figure 4-1. Operation 1 is named

Interface Manager. Operation 2 is called Detail Features. Operation 3a is called Insert

Door and Operation 3b is called Door Fasteners.

Figure 4-1: Custom buttons for executing automated operations

4.1 Operation 1: Interface manager

This thesis demonstrates the implementation of one type of interface, which

represents a cylindrical or conical bolted flange joint. There are three key class objects

which store the necessary data and perform the required CAD operations: the

JointObject Class, the ConicalJointObject Class, and the

JointDerivedPart Class. There is also a set of classes for the GUI through which

the user instantiates and edits the three key class objects.

www.manaraa.com

 34

4.1.1 Joint object class

Below is a condensed version of the class definition file. The important member

functions member variables will be described following the example code.

class JointObject{

public:
 //constructors
 JointObject();
 JointObject(std::string Name, //Joint Name
 int nRows, //Number of Fastener Rows
 double D, //Fastener Diameter
 int N, //Number of Fasteners
 double xOut, //Axial Position
 double rOut, //Radial Position
 std::string matIn, //Inner part Material
 std::string matOut, //Outer part Material
 std::string dir, //Flange is Fwd or Aft
 std::string orient); //Boss is Inner or Outer

 //destructor
 ~JointObject();

The constructor of the class takes in the necessary inputs to define the geometry

of the interface. The comments beside each input describe their meaning. Name is used

to distinguish between other interfaces in the assembly. The length of the flange is a

function of nRows, D, N, matIn, and matOut. The position of the interface is

determined by xOut, and rOut. The orientation is determined by dir, and orient.

 //accessor functions (OMITTED)
 //setter functions (OMITTED)

 //member functions
 virtual void CalculateGeometry();
 virtual void MakeExpressions();
 virtual void MakeGeometry();

www.manaraa.com

 35

void MakeHoleControls();
 void RevolveSheet();
 void MakeDatumPlane(int Row);
 void HoleSketch(int Row);

 virtual void ReadMe(std::vector<std::string> &tokens, int &i);
 virtual void WriteMe(ofstream &fout);
 std::string GetBitmapPath();

enum PartPosition{INNER,OUTER};//names of possible part positions
void SketchPart(PartPosition pos);

protected:
 //member variables (OMITTED)
 //calculated values (OMITTED)
 //geometric objects (OMITTED)
};

The first group of member functions are responsible for creating the joint

geometry in the top level assembly sketch. CalculateGeometry uses the member

variables to determine the positions of the points and lines in the sketch including the

location of the fastener holes. MakeExpressions creates the expressions in the part

that the user can use to modify the joint parameters. The expressions are also dependent

on the member variables and include conditional statements so that if for example, the

part material changes, the flange length will be recalculated appropriately.

MakeGeometry creates the actual lines, dimensions and constraints in the sketch as

seen in Figure 4-2.

Figure 4-2: Control sketch displaying dimensions and expressions for a JointObject J0.

www.manaraa.com

 36

void MakeHoleControls();

 void RevolveSheet();
 void MakeDatumPlane(int Row);
 void HoleSketch(int Row);

The second group of member functions is responsible for creating the additional

geometry used to control the location and size of the fastener holes. MakeHoleControls

works as follows.

void JointObject::MakeHoleControls(){
 MakeDatumPlane(1);
 HoleSketch(1);
 if(this->m_nRows ==2)
 {
 RevolveSheet();
 MakeDatumPlane(2);
 HoleSketch(2);
 }
}

MakeDatumPlane creates the plane for the hole sketch. If the input is 1, it

creates the plane at the midpoint of the row 1 fastener location line (dimensioned as

J0_xeOut in Figure 4-2). If the input is 2, it creates the plane at the midpoint of the edge

of the sheet which is created by the RevolveSheet function. This function revolves

the row 2 fastener location line (dimensioned as J0_xeIn in Figure 4-2) by half of the

angle between holes in the first row (θ = 180 / N) . Finally, HoleSketch creates a circle

of size D and constrains it to be coincident with the same edge used to create the datum

plane. Once completed, the control geometry will look like Figure 4-3.

www.manaraa.com

 37

Figure 4-3: JointObject control sketch and hole control geometry

virtual void ReadMe(std::vector<std::string> &tokens, int &i);

 virtual void WriteMe(ofstream &fout);
 std::string GetBitmapPath();

The third group of member functions are used in the GUI. ReadMe parses an

input file and sets the member variables associated with the JointObject. WriteMe

writes the member variables to an output file. GetBitmapPath returns the path of an

image which illustrates the direction and orientation of the JointObject for reference

in the GUI.

enum PartPosition{INNER,OUTER};//names of possible part positions
void SketchPart(PartPosition pos);

The final member function, SketchPart, is used to create geometry in the cross

section sketch of the child part and constrain it to the control structure. The

PartPosition enumerator is used to distinguish the placement of the part geometry.

www.manaraa.com

 38

For parts in the INNER position, one line is created coincident with the both the start and

end points of the flange line (dimensioned as J0_rIn in Figure 4-2) and another line is

created coincident with the vertex between the boss and the flange (J0_xIn,J0_rIn in

Figure 4-2) and parallel to the vertical boss line. For parts in the OUTER position, two

lines are created coincident with the boss/flange vertex (J0_xOut,J0_rOut in Figure 4-2);

one is parallel to the boss line (J0_xOut) and the other is parallel to the flange line

(J0_rOut).

4.1.2 Conical joint object class

The ConicalJointObject class inherits from the JointObject class

and therefore makes use of many of the JointObject member functions. The

member functions declared as virtual in the JointObject class are overloaded in

the ConicalJointObject class, and have the same functionality. The other key

difference in the ConicalJointObject class is that it contains an additional input

called Ang which designates the angle between the flange and the horizontal axis. The

class definition is below and Figure 4-4 illustrates the control structure it creates.

class ConicalJointObject : public JointObject{

public:
 //constructor
 ConicalJointObject();
 ConicalJointObject(std::string Name,
 int nRows,
 double D,
 int N,
 double xOut,
 double rOut,
 double Ang, //Angle between flange and axis
 std::string matIn,
 std::string matOut,
 std::string dir,

www.manaraa.com

 39

 std::string orient);

 //destructor
 ~ConicalJointObject();

 //overloaded member functions
 void CalculateGeometry();
 void MakeExpressions();
 void MakeGeometry();
 void WriteMe(ofstream &fout);
 void ReadMe(std::vector<std::string> &tokens,int &i);

private:
 //unique input value
 double m_Ang;
};

Figure 4-4: ConicalJointObject control sketch and hole control geometry

Table 4-1 illustrates the part positions and orientations of both the

JointObject and ConicalJointObject control structures.

www.manaraa.com

 40

Table 4-1: Joint orientations and part positions

 JointObject ConicalJointObject

 Flange Forward Flange Aft Flange Forward Flange Aft

Boss
Outer

Boss
Inner

4.1.3 Joint derived part class

The JointDerivedPart class contains the information for each component in

the assembly and the member functions to begin defining the part geometry and topology

and to create the associative links to the top level assembly part. The class definition file

is shown below with descriptions.

class JointDerivedPart{
 friend class InterfaceManagerUI;
public:
 //constructors
 JointDerivedPart(void);
 JointDerivedPart(std::string Name,
 std::vector<JointObject*> Joints,
 std::vector<JointObject::PartPosition> Positions,
 std::string Mat,
 std::string subAssmName = "");

//destructor
 ~JointDerivedPart(void);

The input variable, Name, is the actual component name in the assembly.

Joints is the collection of JointObjects associate with the part. Positions is

the collection of enumerators to define the location of the part on the interface. Mat is

the material of the part, and subAssmName is the name of the sub-assembly which

www.manaraa.com

 41

contains the part if it is not a direct child of the top level assembly. The default value of

subAssmName is set to the null string to designate that the part does not belong to a

sub-assembly.

//accessor functions (OMITTED)
 //member functions
 void CreatePart();

void MakeWaveLinks();
 void WaveLink(JointObject* Joint);
 void SketchCrossSection();
 void PassMaterialToJoints();
 void WriteMe(ofstream &fout);

private:

//member variables (OMITTED)
};

The member function CreatePart creates the actual part file (and sub-

assembly part file if applicable) and adds it to either the sub-assembly or the top level

assembly. MakeWaveLinks loops through the Joints and calls WaveLink for each

one to create the associative link features. Since each line in the control structure is

named using the Joint name as a prefix, the WaveLink function can retrieve them by

name. Note however, that NX stores the names of objects in upper case, so the joint

name must be converted to upper case whenever the object is instantiated.

SketchCrossSection loops through the joints and calls the SketchPart function

for each Joint with the appropriate PartPosition as shown below.

void JointDerivedPart::SketchCrossSection(){
 . . . create the sketch, name it “CS” . . .
 for(int i=0;i<m_Joints.size();i++)
 {
 m_Joints[i]->SketchPart(m_Positions[i]);
 }
 //update and close control sketch
}

www.manaraa.com

 42

In order for subsequent operations to work, they need to know which

JointObjects are associated with each part and what type of interfaces they are. This

has been accomplished by creating attributes in the part file. When CreatePart is

called, it adds an attribute to the part file named “Joints” with the value “0”. The

WaveLink function creates the attributes “JointXName” and “JointXType” where X is

incremented each time the function is called. This portion of the WaveLink code is

shown below.

void JointDerivedPart::WaveLink(JointObject * Joint){
 ...

//get the “JOINTS” string attribute and convert it to an integer
NXString numJoints = workPart->GetStringAttribute("JOINTS");
int n = atoi(numJoints.GetText());
//increment it
n++;
//create the attribute “JOINTX = name of joint”
workPart->SetAttribute("JOINT"+stringify(n), Joint->getName());
//set the “JOINTS” attribute to the incremented value
workPart->SetAttribute("JOINTS",stringify(n));

 //create the string variable for the joint type by concatenating

//abbreviations for the type,direction, and orientation
std::string JointType = Joint->IsConical ? "CON" : "CYL";
JointType += Joint->getDir() == "FLANGE_FORWARD" ? "FWD" : "AFT";
JointType += Joint->getOrient() == "BOSS_OUTER" ? "OUT" : "INN";
//create the “JOINTX_TYPE = type” attribute
workPart->SetAttribute("JOINT"+stringify(n)+"_TYPE",JointType);
...

}

PassMaterialToJoints sets the material variable for each Joint and calls

its CalculateGeometry function. WriteMe, as in the JointObjectClass,

writes the output file for the object.

www.manaraa.com

 43

4.1.4 GUI

The Interface Manager is the GUI that helps the user quickly create instances of

the classes just described and then also uses their member functions to execute the steps

of Operation 1 discussed in Chapter 3. Figure 4-5 illustrates the GUI which was designed

using the NX UIStyler tool.

Figure 4-5: Interface manager GUI

There are two collapsible sections in the Interface Manager. The first section is

called Joint Definitions. The Joints List contains the name of each of the

JointObjects. Next to the Joints List is the Joint Name box and the Add and Delete

www.manaraa.com

 44

Buttons. Below them, are the radio boxes and input boxes to define all of the necessary

inputs for the JointObjects. At the bottom of the first section is the illustration of

the current JointObject orientation.

The second section of the Interface Manager is the Part Definition section. It

contains a similar list box for the Parts and also a multi-selection box where the user can

specify which joints are associated with each part. If the part needs to be in a sub-

assembly, the user can check the box below the lists and give the sub-assembly a name.

The radio boxes below the check box are where the user designates the part position on

the interface and the part material. Again, illustrations of the selected joints are displayed

at the bottom.

The class definition of the GUI is shown below

class InterfaceManagerUI{
public:
 //NX class methods (OMITTED)

//my class methods
 void CreateAssemblyAndControlStructure();
 void ResetJointImage();
 void WriteOutputFile();
 //------------------ UIStyler Callback Prototypes ---------------//

(PROTOTYPE VARIABLE LISTS HAVE BEEN OMMITED FOR BEVITY)
 NXOpen::UIStyler::DialogState MakeMe_cb(…);
 NXOpen::UIStyler::DialogState action_AddJoint_act_cb(…);
 NXOpen::UIStyler::DialogState action_Delete_act_cb(…);
 NXOpen::UIStyler::DialogState ListActivated(…);
 NXOpen::UIStyler::DialogState RadioChangeDir(…);
 NXOpen::UIStyler::DialogState RadioChangeOr(…);
 NXOpen::UIStyler::DialogState RadioChangeType(…);
 NXOpen::UIStyler::DialogState MultiListJointsAcivated(…);
 NXOpen::UIStyler::DialogState PartsListActivated(…);
 NXOpen::UIStyler::DialogState SubAssmChanged(…);
 NXOpen::UIStyler::DialogState action_AddPart_act_cb(…);
 NXOpen::UIStyler::DialogState action_DeletePart_act_cb(…);
 NXOpen::UIStyler::DialogState OK_cb(…);
 NXOpen::UIStyler::DialogState Cancel_cb(…);
private:
 //Dialog Objects (OMITTED)
 //My variables
 std::vector<JointObject *> JointObjects;
 std::vector<JointDerivedPart *> Parts;
};

www.manaraa.com

 45

The InterfaceManagerUI class has two member variables in addition to the

dialog objects: the JointObjects vector, and the Parts vector. These are

collections of the class objects described in sections 4.1.1 to 4.1.3.

A callback is a class function that is executed following a specific action from the

user. The associations between the callbacks and the GUI objects are illustrated in Figure

4-6.

Figure 4-6: GUI callbacks

MakeMe_cb is executed when the GUI is first opened. It parses a file of defaults

looking for the keywords “Joint”, “ConicalJoint”, and “Part”. When it finds a keyword, it

creates the appropriate object using the default constructor, calls its ReadMe function

which initializes the member variables, then adds the object to the collection and to the

lists.

www.manaraa.com

 46

The action_AddJoint_act_cb callback instantiates a new JointObject

using the current values of the input objects and adds it to JointObjects and the

Joints list. It also verifies that the name of the object being added is not already in the

list.

The action_Delete_act_cb callback finds the name in the Joints List that

matches the current value in the Joint Name box and removes it from the lists and

removes the associated object from the collection.

The ListActivated callback finds the JointObject in the collection whose

name matches the selected name in the list and populates all of the dialog objects with

values retrieved from the object, including the illustration path.

RadioChangeDir, RadioChangeOr, and RadioChangeType each call

the ResetJointImage function, which resets the path of the illustration to match the

current inputs.

The PartsListActivated callback finds the JointDerivedPart object in the

collection that matches the selected name and highlights the items in the Joints List that

match one of the JointObjects in the JointDerivedPart. It also populates the values of the

other dialog objects with values retrieved from the JointDerivedPart object. If only one

joint is associated with the JointDerivedPart object, then the second image and Joint

Position Radio Box are hidden.

The MultiListJointsAcivated callback sets the left image according to

the selected joint whose axial position is most forward, and the right image according to

the second joint if two joints are selected. If only one item is selected, the image on the

right and the Aft Joint Position Radio Box are hidden.

www.manaraa.com

 47

The action_AddPart_act_cb and action_DeletePart_act_cb

callbacks work the same as the callbacks to add and delete Joints. However, it also

verifies that either one or two joints are selected.

The SubAssmChanged callback toggles whether the sub-assembly Name Box

is available.

If Cancel_cb is executed, then nothing happens and the dialog closes.

If OK_cb is executed, then the following code is executed.

this->WriteOutputFile();
this->CreateAssemblyAndControlStructure();

for(int i=0;Parts.size();i++)
{
 Parts[i]->CreatePart();
 Parts[i]->MakeWaveLinks();
 Parts[i]->SketchCrossSection();
}

The CreateAssemblyAndControlStructure and WriteOutputFile

member functions are summarized below.

void InterfaceManagerUI::WriteOutputFile(){
 ofstream fout(//file path and name of default file);

 for(int i=0;i<JointObjects.size();i++)
 {
 JointObjects[i]->WriteMe(fout);
 }

 for(int i=0;i<Parts.size();i++)
 {
 Parts[i]->WriteMe(fout);
 }

 fout.close();
}

www.manaraa.com

 48

void InterfaceManagerUI::CreateAssemblyAndControlStructure(){
 // Create Assembly Part File
 // Create expressions for global variables
 // (axial clearance and radial clearance)
 // Make and open Control Sketch

 // Make expressions and Geometry for each Joint Object
 // Keep track of which Joint Objects are conical

std::vector<int> ConIndxs;
 for(int i = 0;i<JointObjects.size();i++)
 {
 JointObjects[i]->MakeExpressions();
 JointObjects[i]->MakeGeometry();
 if(JointObjects[i]->IsConical)
 ConIndxs.push_back(i);
 }

 if(ConIndxs.size()==2) // if there are two conical joints
 {
 //constain conical flanges to be parallel
 //Create a dimension between the conical flanges to space
 //them apart by a default for the interstage thickness
 }

 //update and close control sketch

 //Create hole sketches
 for(int i = 0;i<JointObjects.size();i++)
 {
 JointObjects[i]->MakeHoleControls();
 }

}

In summary, Operation 1 completes the following steps:

1. Creates the assembly and component files
2. Creates the assembly control structure
3. Creates the associative links from the assembly to each child
4. Starts sketching the child cross sections

Figure 4-7 demonstrates what an example part cross section would look like after

Operation 1 is complete. The thicker lines are the sketch lines in the part. The darker

thin lines and points are the constraints and the circular lines from the hole sketches. The

lighter thin lines are the control structure lines.

www.manaraa.com

 49

Figure 4-7: One component cross section

4.2 Operation 2: Detail features

Operation 2 contains four main functions. Each one traverses the entire assembly

and performs the same routine for each component. Below is pseudo code that

demonstrates how to traverse the assembly.

void Traverse(component1){
 SetWorkComponent(component1); //make component1 the active part

subParts = component1->GetChildren();
 if(subParts.size==0) //ignore assembly parts

{
 //call function to be executed on each part
 }
 for(all subParts)
 {
 Traverse(subParts[i]);
 }
}

int main(){
 //get top level assembly part
 Traverse(TopPart);
}

www.manaraa.com

 50

The four routines called by the traversing function are Revolve,

DetailFeatures, Extrude, and Pattern.

4.2.1 Revolve

The Revolve routine simply queries the active part and finds the sketch feature

named “CS”. It then uses the “CurveFeatureRule” to add all of the sketch curves to the

revolve section. This enables the function to work without knowing any of the names of

the curves in the sketch. The axis of revolution is always the x-axis and the angle of

revolution is always 360.

4.2.2 Detail features

The DetailFeatures routine queries the attributes in the active part to

determine the number of joints in the part, their types, and their names (as described in

section 4.1.3). Then the routine finds the edges of the part body that intersect the key

vertices of each joint and creates a chamfer or fillet for each one. The key vertices and

their associated operations are illustrated in Figure 4-8 and the example code is included

following the image.

Figure 4-8: Fillet and chamfer rules

www.manaraa.com

 51

void DetailFeatures(){
 . . .Get Part Body. . .

 //Get number of joints from part attributes
 std::string numJoints = workPart->

GetStringAttribute("JOINTS").GetText();
 int n = atoi(numJoints.c_str());
 //Get top level control sketch
 Sketch *ControlSketch(dynamic_cast<Sketch *>(displayPart->
 Sketches()->FindObject("SKETCH_CONTROL_STRUCTURE")));

 for(int j =1;j<=n;j++) //for each joint in the active part
 {
 //get joint id
 std::string JointID = workPart->
 GetStringAttribute("JOINT"+stringify(j)).GetText();
 //get joint type and separate the first 3 characters
 std::string JointType = workPart->
 GetStringAttribute("JOINT"+stringify(j)+"_TYPE").GetText();
 std::string shape = JointType.substr(0,3); //CON or CYL
 . . . get lines from ControlSketch . . .

 //get all edges

std::vector<Edge *> bodyedges = theRevFeat->GetEdges();
 for(int i=0;i<bodyedges.size();i++) //for all edges
 {
 double distVertOut= GetMinDist(lineVertOut,bodyedges[i]);
 double distHorzOut=GetMinDist(lineHorzOut,bodyedges[i]);
 //if current edge intersects outer flange/boss vertex

 if((distVertOut<0.001)&&distHorzOut<0.001)
 {
 ChamferEdge(bodyedges[i]);
 continue;
 }
 double distVertIn = GetMinDist(lineVertIn,bodyedges[i]);
 double distHorzIn = GetMinDist(lineHorzIn,bodyedges[i]);
 //if current edge intersects inner flange/boss vertex
 if((distVertIn<0.001)&&distHorzIn<0.001)
 {
 BlendEdge(bodyedges[i]);
 continue;
 }
 double distXEnd = GetMinDist(lineXEnd,bodyedges[i]);
 //if current edge intersects inner flange end point
 if((distXEnd<0.001)&&distHorzIn<0.001)
 {
 if(shape=="CYL") //only for cylindrical joints
 {
 ChamferEdge(bodyedges[i]);
 continue;
}}}}

www.manaraa.com

 52

4.2.3 Extrude

The extrude routine searches through all of the “linked curve” features and

finds each of the circles from the control structure. For each circle it finds, it calls the

ExtrudeFastenerHole function which extrudes the hole and names the expressions

and features according to the joint name and row number of the matching arc in the top

level assembly. Code for both functions is included below with explanatory comments.

void Extrude(){
 . . . get part features (myFeatures) . . .
 for(int i=0;i<myFeatures.size();i++)
 {
 std::string type = myFeatures.at(i)->FeatureType().GetText();
 if(!type.compare("LINKED_CURVE"))// all waved control structures
 {
 Features::CompositeCurve *myCompCurve

 (dynamic_cast<Features::CompositeCurve *>(myFeatures.at(i)));
 for(int j=1;j<=10;j++) //each curve in the wave link feature
 {

 Arc *arc1(dynamic_cast<Arc *>(myCompCurve->
 FindObject("CURVE"+stringify(j))));
 Arc *nullArc(NULL);
 if(arc1!=nullArc) //each control curve that is a valid arc
 {
 double deltaAngle = arc1->EndAngle() - arc1->StartAngle();
 if(deltaAngle==2*PI) //if arc is a complete circle
 {
 ExtrudeFastenerHole(arc1);
}}}}}}

void ExtrudeFastenerHole(Arc *arc1){

. . . create the extrude feature (called feature1). . .

 // get the collection of sketches from the top level assembly
 SketchCollection::iterator sket_it = displayPart->Sketches()->begin();

 //cycle through the top assembly sketches
 for(;!(sket_it==displayPart->Sketches()->end());sket_it++)
 {
 std::vector<NXObject *> sketchgeometry =(*sket_it)
 ->GetAllGeometry();
 Arc *arc2(dynamic_cast<Arc *>(sketchgeometry[0]));
 Arc *nullArc(NULL);
 if(arc2!=nullArc) //get the valid arc
 {

www.manaraa.com

 53

 //get the assembly arc that matches the input arc
 Point3d currentCenter = arc2->CenterPoint();
 if(fabs(currentCenter.X - arc1->CenterPoint().X) < 0.1)
 {
 std::string assmArcName = sketchgeometry[0]
 ->Name().GetText();
 //JointID = the arc name minus "HOLEARC"
 std::string JointID =
 assmArcName.substr(assmArcName.size()-7);
 feature1->SetName(JointID+"_HOLE");
 break;
}}}}

4.2.4 Pattern

One of the limitations in the NX Open C++ library is its inability to create feature

patterns. Because of this, the Pattern routine uses the C language API and converts

between the C “tag” objects and the C++ class objects. There are some objects however,

that cannot be converted to tags. The new version of the Hole feature in NX 5 Release 3

could not be converted to a tag and this is the reason extruded sketches were used to

create the fastener holes. There were other problems associated with the Pre-NX5-

Release 3 Hole feature as well.

The Pattern routine first finds each of the extrude features in the active part

whose name ends in “_Hole”. For each one, it extracts the name of the joint object from

the extrude feature name (the portion before “RX_Hole”). Then it creates a circular

pattern referring to the expressions in the top level assembly which were created during

Operation 1 as explained in section 4.1.1. More specifically, it sets the instance quantity

to “myAssembly::JointName_N” and the angle to “360/myAssembly::JointName_N”.

The routine also renames the expressions created for the pattern feature to be meaningful.

Example code for finding the extrude features and creating the patterns is as follows.

www.manaraa.com

 54

//// FINDING THE EXTRUDE FEATURES ////
. . . get all of the features from the active part (myFeatures) . . .
for(int i=0;i<myFeatures.size();i++){
 std::string type = myFeatures.at(i)->FeatureType().GetText();
 //for all extrude features
 if(!type.compare("EXTRUDE"))
 {
 Features::Extrude *myExtrude =
 dynamic_cast<Features::Extrude *>(myFeatures.at(i));
 std::string name = myExtrude->Name().GetText();
 if(name.size()>5) //prevents crashing on non-named features
 {
 // if name ends in “_Hole”
 if(!name.substr(name.size()-5).compare("_HOLE"))
 {
 // get the next feature as well
 i++;
 Features::Extrude *myExtrude2 =
 dynamic_cast<Features::Extrude *>(myFeatures.at(i));
 // call the pattern routine for both features
 PatternFastenerHoles(myExtrude,myExtrude2);
}}}}

//// CREATING THE PATTERN AND RENAMING EXPRESSIONS ////
void PatternFastenerHoles(Features::Extrude *R1extrudeFeature,
 Features::Extrude *R2extrudeFeature){

. . . convert feature objects to tags and add to feature_list . . .

. . . create other input data structures . . .

 //extract joint ID from extrude feature name
 ExtrudeName = R1extrudeFeature->Name().GetText();
 //Joint name = extrude name minus “RX_HOLE”
 FirstJointName = ExtrudeName.substr(0,ExtrudeName.size()-7);

 //create the expressions for the instance number and spacing angle
 number_str = "myAssembly::"+FirstJointName+"_N";
 Ang_str = "360/myAssembly::"+FirstJointName+"_N";

 // make the pattern feature with other inputs
 UF_MODL_create_circular_iset(... ,number_str,Ang_str,feature_list);

 //get iterator of the expression collection in the active part
 NXOpen::ExpressionCollection::iterator exp_it =
 workPart->Expressions()->begin();

 //cycle through all expressions
 for(;exp_it!=workPart->Expressions()->end();exp_it++)
 {
 name = (*exp_it)->Name().GetText();
 RHS = (*exp_it)->RightHandSide().GetText();
 //if right hand side matches number_str
 //and name does not match “JointName_N”

www.manaraa.com

 55

 if(!RHS.compare(number_str)&&(name.compare(FirstJointName+"_N")))
 {
 //rename expression from p123 to “JointName_N”
 workPart->Expressions()->Rename((*exp_it), FirstJointName+"_N");
 break;
 }
 }

 //the rename function reorders the collection of expressions,
 //so after the first expression is renamed, the loop was restarted
 exp_it= workPart->Expressions()->begin();
 for(;exp_it!=workPart->Expressions()->end();exp_it++)
 {
 name = (*exp_it)->Name().GetText();
 RHS = (*exp_it)->RightHandSide().GetText();
 if(!RHS.compare(Ang_str)
 &&(name.compare(FirstJointName+"_FastAng")))
 {
 //renames p123 to “JointName_FastAng”
 workPart->Expressions()->
 Rename((*exp_it),FirstJointName+"_FastAng");
 break;
}}}

4.3 Operation 3: Insert door

Operation 3 allows the user to insert an access door on the interstage including the

door frame and the stiffening alterations on the interstage body. There are two sub tasks

involved in Operation 3. The first creates the door and door frame components and

stiffens the interstage. The second creates the fastener holes for all three components.

4.3.1 Operation 3a: Components

When Operation 3a is executed, a GUI is opened to retrieve inputs from the user

for defining the type of door frame and whether the interstage should be stiffened (See

Figure 4-9). The GUI also retrieves inputs for the fastener sizes, the corner radii, the

thicknesses of the frame and the stiffened cross section. Using dialog callback functions,

the Load Bearing Inputs section and the Stiffening Inputs section is hidden if the

www.manaraa.com

 56

associated check boxes are unchecked. The inputs from the GUI are stored as global

variables so they can be accessed by any of the functions within the program. Once OK

is clicked, the dialog closes and the user is asked to select the sub-assembly into which

the door and door frame components are then added. Expressions are also created in the

components using the input variables.

Figure 4-9: Door definition GUI

Since this operation will be executed for each door, it must use a naming

convention that provides unique object and expression names for each door. An

expression in the interstage sub-assembly keeps track of the number of doors and an

appropriate prefix is added to each name i.e. “Door1”, “Door2” etc. A global variable is

also created so that each sub-function in the application can reference the number of

doors as needed.

www.manaraa.com

 57

Interstage

As described in Chapter 3, this operation requires geometric inputs from the user.

There must be a sketch in the interstage component that represents the cutout region. The

sketch must be created on a plane that is tangent to the surface of the interstage and must

contain a closed, concave loop of lines. The second geometric input is the line in the

cross section that will be revolved to create the IML surface. When the operation begins,

the user is also prompted to select the interstage component and its sub-assembly to

ensure that the correct part files are modified.

The first step in altering the interstage is to extrude the cutout sketch and apply

blends to its extruded edges. The extrude function, like the revolve routine discussed in

section 4.2.1, uses the “CurveFeatureRule” to add all of the lines from the selected sketch

to the section definition of the extrude function. This eliminates the need to name the

sketch lines. After the sketch is extruded into a sheet body, the blend function needs to

identify the correct edges on the sheet body. This is done by comparing the direction of

each edge to the direction of the extrude feature. Sample code of this procedure is

summarized below.

//// COLLECTING EDGES WHOSE DIRECTION MATCHES EXTRUDE DIRECTION ////
std::vector<Edge *> edges4;
//loop though all edges in the feature
for(int i=0;i<allEdges.size();i++)
{
 // get vertices of current edge

allEdges[i]->GetVertices(vertex1,vertex2);
//calculate magnitude of edge vector

 double mag = sqrt(pow(vertex1->X - vertex2->X,2)
 +pow(vertex1->Y - vertex2->Y,2)
 + pow(vertex1->Z - vertex2->Z,2));
 //calculate unit edge vector
 Vector3d edgeUnitVect((vertex1->X - vertex2->X)/mag,
 (vertex1->Y - vertex2->Y)/mag,
 (vertex1->Z - vertex2->Z)/mag);

www.manaraa.com

 58

 //compare edge vector to extrude vector
 if(fabs(edgeUnitVect.X - extrudeVect.X)<.0001)
 {
 //add current edge to collction if vectors match
 edges4.push_back(allEdges[i]);
 }
}

The next step in Operation 3a is to create the offset surfaces from the IML surface

and from the cutout surface. If the user selects the non-stiffened interstage option, then

the only offsets that are needed are for the surfaces at the beginning of the flange and at

the outer mold line (OML). Otherwise, offsets are needed to represent the entire

boundary of the stiffening body that will be united to the interstage body.

The only difficulty in creating the offset surface features is verifying that the

offset directions are correct. In order to do this, one offset surface is created and its

position is compared to the position of the source surface. If the position is incorrect, the

offset feature is edited to flip the offset direction. A Boolean variable keeps track of

whether the first offset was flipped or not and applies the same flip condition to all

subsequent offsets. These segments of the code are shown below.

////VERIFY THAT OFFSETS ARE IN CORRECT DIRECTION////
bool FlipOffset = false; //boolean variable to track flip condition

//get maximum radius of the outermost vertex
//of the line used to create the IML surface
double IMLR1 = sqrt(lineIR->StartPoint().Y*lineIR->StartPoint().Y

+ lineIR->StartPoint().Z*lineIR->StartPoint().Z);
double IMLR2 = sqrt(lineIR->EndPoint().Y*lineIR->EndPoint().Y

+ lineIR->EndPoint().Z*lineIR->EndPoint().Z);
double IMLR = max(IMLR1,IMLR2);

//get outermost vertex on offset surface
double offsetR,R1,R2;
offsetR=R1=R2= 0;
//get offset surface edges
std::vector<Edge *> offsetEdges = OMLOffset->GetEdges();
//loop over all edges
for(int i =0;i<offsetEdges.size();i++)

www.manaraa.com

 59

{
 //get vertices of currect edge
 offsetEdges[i]->GetVertices(vertex1,vertex2);

//calculate radii of vertices
 R1 = sqrt(vertex1->Y*vertex1->Y+vertex1->Z*vertex1->Z);
 R2 = sqrt(vertex2->Y*vertex2->Y+vertex2->Z*vertex2->Z);
 //if either radius is the new maximum
 if(max(R1,R2)>offsetR)
 {
 offsetR=max(R1,R2); //set offsetR equal to it
 }
}
//if offsetR is less than IMLR, reverse the direction of the IML
if(offsetR<IMLR)
{
 ReverseOffsetDirection(FlipOffset);
}

The offset surfaces represent all of the boundaries for the stiffening region that are

normal to either the cutout surface or the IML surface. For the rest of the boundaries, a

routine is called to generate a swept surface using intersection curves as guides. Here is

an illustration of the inputs and results for this routine followed by its pseudo-code.

Figure 4-10: Inputs and results of swept surface routine

www.manaraa.com

 60

SweptSurface(Offset1a,Offset1b,Offset2a,Offset2b){
 GuideCurve1 = Intersection(Offset1a,Offset1b);
 GuideCurve2 = Intersection(Offset2a,Offset2b);
 Point1 = Intersection(GuideCurve1,XZPlane);
 Point2 = Intersection(GuideCurve2,XZPlane);
 SweepSection = Line(Point1,Point2);
 SweptSurface = Sweep(SweepSection,GuideCurve1,GuideCurve2);
}

When creating the sweep feature, the guide curves must be pointing in the same

direction. To verify this, compare the signs of the Y and Z components of the guide

direction vectors. If either of the component signs do not match, then execute the

ReverseDirectionOfClosedLoop API command.

 Now that there are surfaces which bound the entire stiffening region, they must

be trimmed to exclusively represent the boundary surfaces of the stiffening body as

discussed in Chapter 3. Except for finding the region points, the trimming operation is

straightforward. The function inputs include the set of surface bodies to be trimmed, the

set of faces that will trim them, and the set of points representing the regions to either be

retained or discarded. The bodies and faces have already been created at this point and

just need to be grouped into sets. The easiest way to obtain the set of region points is to

use the vertices of the edges on the source bodies because it is always known whether the

regions containing the edges should be retained or discarded. Here is the example code

of finding the region points.

//// FINDING REGION POINTS ////

//if region point can be any vertex on the source body
Point3d Pnt1(0,0,0);
Point3d Pnt2(0,0,0);
SourceFace->GetEdges()[0]->GetVertices(&Pnt1,&Pnt2);
trimmedSheet = TrimSheet(Body,Face,Pnt1,bool_keep,"featureName");

//if region point must be the innermost vertex on the source body
std::vector<Edge *> ex_edges = SourceFace->GetEdges();

www.manaraa.com

 61

Point3d Pnt1 = GetMinREdgePoint(ex_edges);
trimmedSheet = TrimSheet(Body,Face,Pnt1,bool_keep,"featureName");

//the function for getting the innermost vertex
//it is trivial to modify this function to return the outermost vertex
Point3d GetMinREdgePoint(std::vector<Edge *> edges){
 //std::vector<Edge *> edges = trimmed_cutOut->GetEdges();
 double R = 100000;
 double tempR1,tempR2;
 Point3d minPoint;
 Point3d vertex1(0, 0, 0);
 Point3d vertex2(0, 0, 0);
 for(int i = 0;i<edges.size();i++)
 {
 edges[i]->GetVertices(&vertex1,&vertex2);
 tempR1 = sqrt(vertex1.Y*vertex1.Y+vertex1.Z*vertex1.Z);
 tempR2 = sqrt(vertex2.Y*vertex2.Y+vertex2.Z*vertex2.Z);

 if(tempR1<R)
 {
 minPoint.X = vertex1.X;

 minPoint.Y = vertex1.Y;
 minPoint.Z = vertex1.Z;
 R = tempR1;

 }
 if(tempR2<R)
 {
 minPoint.X = vertex2.X;

 minPoint.Y = vertex2.Y;
 minPoint.Z = vertex2.Z;

 R = tempR2;
 }
 }
 return minPoint;
}

The last steps in altering the interstage component are also straightforward. The

interstage body should first be trimmed by the offset surfaces to remove the cutout region

and any region where the stiffening portion is thinner than the body. Figure 4-11 shows

the two bodies before and Figure 4-12 shows the bodies after the trimming operation.

The trimmed boundary surfaces of the stiffening body should then be sew together and

united with the interstage body through a Boolean operation (see Figure 4-13).

www.manaraa.com

 62

Figure 4-11: The interstage body (partially transparent) and the stiffening body before trimming

Figure 4-12: The trimmed interstage body and the stiffening body

www.manaraa.com

 63

Figure 4-13: United interstage body and stiffening body

Frame

The first step in creating the frame component body is wave linking the key

surfaces from the interstage component. This is another capability that is lacking in the

NX Open C++ API. Creating the wave linked faces is easily accomplished in the C-

language API though and does not need much discussion other than to mention that the

surfaces that should be wave linked are 1) the IML surface, 2) the cutout surfaces, 3) the

outer flange surface, and 4) the surfaces around the beginning of the flange (See Figure

4-14).

The offset surfaces on the door frame are created in the same manner as discussed

for the interstage offset surfaces. First, there are offsets created from the IML surface

and from the cutout surface to provide clearances between the frame and the interstage.

www.manaraa.com

 64

Depending on the type of frame specified by the user, other offset surfaces are created to

bound all of the surfaces on the boundary (See Figure 4-15).

Figure 4-14: Wave linked faces in the door frame

Figure 4-15: Frame offset surfaces

www.manaraa.com

 65

One issue comes up when creating an inward facing offset with a value that is

larger than the blend radius of the original cutout blends. As illustrated in Figure 4-16,

which is aligned with the extrude direction, the inner flange offsets’ blended faces would

fail and the linear faces would cross each other. To correct this issue, offsets are only

applied to the linear faces and then face blend features are created between adjoining

surfaces.

Figure 4-16: Large inward facing offsets need face blend feature

For the face blend features to work properly, the faces must be ordered by

proximity. This was accomplished by first collecting the top edge of each inner flange

offset surface, and then finding the edge whose vertex is closest to one of the vertices on

the first edge. The indexes of the faces are added to a list and the process repeats with

each new edge while ignoring the indexes that have already been listed. After all the

faces have been added to the list, a face blend feature is created between each face and

www.manaraa.com

 66

the face listed next in the list. Finally a face blend feature is created between the first and

last face in the list. The code for creating the ordered list of indexes and for creating the

face blend features is shown below.

//// ORDERING FACES AND INSERTING FACE BLEND FEATURES ////
. . . get top edges of offset faces . . .

//get ordered list of indexes
std::vector<int> SortedIndexes;
SortedIndexes.push_back(0);
for(int i = 0;i<topEdges.size()-1;i++)
{
 GetClosestEdge(topEdges,SortedIndexes,SortedIndexes.back());
}
//Blend each face to its neighbor
for(int i=0;i<InnerFlangeFaces.size()-1;i++)
{
 FaceBlend(InnerFlangeFaces[SortedIndexes[i]],
 InnerFlangeFaces[SortedIndexes[i+1]],"InnerFlangeBlendR");
}
FaceBlend(InnerFlangeFaces[SortedIndexes[0]],

InnerFlangeFaces[SortedIndexes.back()],"InnerFlangeBlendR");

// FUNCTION FOR GETTING NEXT CLOSES EDGE //
void GetClosestEdge(std::vector<Edge *> edges,

 std::vector<int> &SortedIndexes,
 int index){

 //get the vertices of the key edge
 Point3d v1(0, 0, 0);
 Point3d v2(0, 0, 0);
 edges[index]->GetVertices(&v1,&v2);
 double MinDist = 1000;
 int closestEdgeIndex;

 for(int i=0;i<edges.size();i++) //loop over all edges
 {
 // determine whether current index is already in the sorted list
 bool ignore = false;
 for(int j = 0;j<SortedIndexes.size();j++)
 {
 if(SortedIndexes[j]==i)
 ignore=true;
 }

 // if it is not then...
 if(!ignore)
 {
 // get the vertices on the current edge
 Point3d tempv1(0, 0, 0);
 Point3d tempv2(0, 0, 0);
 edges[i]->GetVertices(&tempv1,&tempv2);

www.manaraa.com

 67

 //calculate distance from each current vertex to each key vertex
 double dist1 = sqrt(pow(v1.X-tempv1.X,2)
 + pow(v1.Y-tempv1.Y,2) + pow(v1.Z-tempv1.Z,2));
 double dist2 = sqrt(pow(v2.X-tempv1.X,2)
 + pow(v2.Y-tempv1.Y,2) + pow(v2.Z-tempv1.Z,2));
 double dist3 = sqrt(pow(v1.X-tempv2.X,2)
 + pow(v1.Y-tempv2.Y,2) + pow(v1.Z-tempv2.Z,2));
 double dist4 = sqrt(pow(v2.X-tempv2.X,2)
 + pow(v2.Y-tempv2.Y,2) + pow(v2.Z-tempv2.Z,2));
 //reset closestEdgeIndex and MinDist if closer edge is found

 if (dist1<MinDist){
 MinDist=dist1;
 closestEdgeIndex=i;
 }
 if (dist2<MinDist){
 MinDist=dist2;
 closestEdgeIndex=i;
 }
 if (dist3<MinDist){
 MinDist=dist3;
 closestEdgeIndex=i;
 }
 if (dist4<MinDist){
 MinDist=dist4;
 closestEdgeIndex=i;
 }}}
 SortedIndexes.push_back(closestEdgesIndex);
}

Figure 4-17 illustrates the results after creating face blends on the inner flange

offsets from Figure 4-16. If the offset surfaces were originally ordered as shown, the

SortedIndexes vector would end up being [0,1,3,4,2] and face blends would be

created between surfaces 0 and 1, 1 and 3, 3 and 4, 4 and 2, and finally 0 and 2.

After the offset surfaces and face blend features have been created, the surfaces

are trimmed and sewn together using the same methods discussed for the interstage (See

Figure 4-18 and Figure 4-19)

www.manaraa.com

 68

Figure 4-17: Face blend example

Figure 4-18: Trimmed surfaces on frame

www.manaraa.com

 69

Figure 4-19: Door frame surfaces sewn into solid body

Door

There were only a couple additional issues in creating the door component and

they both involved the wave link features. First, it should be noted that the specific

surfaces wave linked to the door component depend on which type of door frame was

selected by the user. If the user selected a non-load-bearing door frame, then the cutout

surface from the interstage should be linked to the door component instead of the inner

boss offset surfaces from the frame component.

The second issue was that a separate feature is created in the part history tree for

each wave linked face and offset surface patch in the frame component. In other words,

if the original door cutout sketch included 4 lines, then there would be separate offset

surface features and wave link features for each of the 4 faces plus one for each of the 4

blended faces. This requires the function that creates the door component to know how

many surface features it needs to link to.

www.manaraa.com

 70

This issue was resolved by outputting the number of sides from the function that

creates the door frame component and inputting it into the function that creates the door

component. Thus, the door function was able to link the correct number of surfaces

based on the number of sides in the cutout sketch.

Results

The completion of Operation 3a results in a modified interstage having a cutout of

user-specified shape with or without a stiffened cross section. It also results in either a

load-bearing or non load-bearing door frame following the arbitrary shape and a door

component that also fits the frame with tolerances. Operation 3a also creates all of the

necessary associative links between the three components and the parameters that will be

used in Operation 3b to insert fastener holes of the specified size. Figures 4-20 through

4-23 show top views and section views of two door examples with different user options.

Figure 4-20 Top view of stiffened load-bearing door configuration

www.manaraa.com

 71

Figure 4-21: Section view of stiffened load-bearing door configuration

Figure 4-22: Top view of un-stiffened, non load-bearing door configuration

www.manaraa.com

 72

Figure 4-23 Section view of un-stiffened, non-load bearing door configuration

4.3.2 Operation 3b: Door fasteners

Operation 3b relies on Operation 3a to create the part expressions and part bodies.

It is separated as a unique application so that the fastener details can be inserted into the

model when the designer wishes. This enables the designer to alter the design and make

modifications to the components before including the full details of the fastener holes.

There are a few over-arching routines utilized in Operation 3b that are repeated

for each set of fastener holes. They are 1. MakeOffsetHoles, 2. CreateSimpleHole, 3.

WaveLinkPoint, and 4. ProjectPoints. The pseudo-code below summarizes how these

routines are executed in the main operation.

www.manaraa.com

 73

void do_ugopen_api()
{

. . . Get Door Component (gDoor_comp), Door Frame Component
(gFrame_comp), and Interstage component (gInt_comp) from user

selections. . .

 //Fasteners between interstage and door frame
 SetWorkComponent(gInt_comp);
 MakeOffsetHoles(... outer flange inputs ...,interstagePoints);

 SetWorkComponent(gFrame_comp);
 std::vector<Point *> FrameLinkedPoints; //output vector
 for(interstagePoints)
 {
 WaveLinkPoint(interstagePoints[i],gFrame_comp,FrameLinkedPoints);
 }
 CreateSimpleHole(FrameLinkedPoints,... outer flange inputs ...);

 //Fasteners between door frame and door
 MakeOffsetHoles(... inner flange inputs ...,framePoints);

 SetWorkComponent(gDoor_comp);
 std::vector<Point *> DoorLinkedPoints; //output vector
 for(framePoints)
 {
 WaveLinkPoint(framePoints[i],gDoor_comp,DoorLinkedPoints);
 }
 Features::ProjectCurve *projFeat = ProjectPoints(DoorLinkedPoints);
 CreateSimpleHole(projFeat,... inner flange inputs ...);
}

MakeOffsetHoles

As described in Chapter 3, the first step in adding fastener details is creating an

offset curve of the cutout edge on the flange surface. The easiest way to find the correct

edge and face is to prompt the user to select them manually. Since this was a challenging

aspect of the program, the example code is included below. The MaskTriple object is the

key to ensuring the correct type of object is selected. Other object type definitions can be

found in “uf_ui_types.h”.

//// Get Selection From User ////
UI *theUI = UI::GetUI();
Selection *thisSelection = theUI->SelectionManager();
thisSelection->initialize();

// set selection mask to only allow the correct type of object
std::vector<Selection::MaskTriple> mask_array;
Selection::MaskTriple mask1 = Selection::MaskTriple::MaskTriple

www.manaraa.com

 74

 (UF_solid_type,UF_all_subtype,UF_UI_SEL_FEATURE_ANY_EDGE);
 // or ..._ANY_FACE...

mask_array.push_back(mask1);
NXObject *selectedObject1;
Point3d cursor(0,0,0);

// get the selection from the user
Selection::Response response1 = thisSelection->SelectObject
 ("Select the forward outer flange edge","", SelectionScopeWorkPart,
 SelectionActionClearAndEnableSpecific,false,false,mask_array,
 &selectedObject1,&cursor);
// verify the response and convert the retrieved object
if(response1==Selection::ResponseObjectSelected)

Edge *cutoutedge = dynamic_cast<Edge *>(selectedObject1);

This method was also used in the main function to obtain the door and door frame

components as well as the interstage component. The prefix used in naming objects and

retrieving objects from the existing components is extracted from the name of the

selected door component.

 After retrieving the edge and face from the user, the offset in face feature is

created with the offset distance being a function of the diameter for the current set of

fasteners. The diameter is retrieved from existing expressions in the part. As with the

other offset features, the direction must be verified. In order to do this, the user is asked

to select the forward most edge of the cutout, and then the routine finds the forward most

vertex on the offset curves. If the forward most vertex on the offset curves is not more

forward than the selected edge, then the offset direction is reversed.

The next step in the MakeOffsetHoles routine, is creating evenly spaced points

along the offset curves. Because the NX feature that adds arrays of points to a curve is

non-associative, individual Smart Point features need to be created at specific parameter

values along the curves. For each curve segment of the offset feature, the length of the

www.manaraa.com

 75

curve is queried, and the number of points is calculated based on the hole diameter and

the curve length to leave a certain spacing between each hole.

Since the curve segments share vertices, only every other curve should have

points at its ends. The number of points (N) on a curve including the endpoints is

calculated by Equation 4.1 and the number of points (N) on a curve excluding the

endpoints is calculated by Equation 4.2

1))D*5.3/(L(ceilN += (4-1)

1))D*5.3/(L(ceilN −= (4-2)

where L is the length of the curve, D is the fastener diameter, and ceil represents the

ceiling function. Since N needs to be a discreet value, the spacing will not be an even

multiple of the diameter, but is within 5-10% of 3 diameters.

In order to distinguish which curves should have points at the ends, the curves in

the offset feature are ordered by length. The longest half of the curves (the sides of the

cutout) will have points at their ends and the shortest half (the corners of the cutout) will

not. As each point is created it is added to a collection. Then once all of the points have

been added to each curve of the feature, the CreateSimpleHole routine is called on the

collected points.

CreateSimpleHole

 The CreateSimpleHole routine creates the NX 5-Release 2 version of hole

feature. This new hole feature is able to create holes which are normal to the nearest

solid surface at the specified points. This routine allows for two different methods of

specifying the input points. It can take in either a vector of points, or a feature which

www.manaraa.com

 76

contains points. The code for adding the points to the “HolePackageBuilder” as it is

called in the C++ API is included below.

if(FeaturePoints) //if points are input from a feature
{
 std::vector<Features::Feature *> features1(1);
 features1[0] = feat; //the input feature
 FeaturePointsRule *featurePointsRule1 = workPart->ScRuleFactory()->
 CreateRuleFeaturePoints(features1);

 holePackageBuilder1->HolePosition()->AllowSelfIntersection(true);

 std::vector<SelectionIntentRule *> rules2(1);
 rules2[0] = featurePointsRule1; //select all points of the feature
 NXObject *null (NULL);
 Point3d helpPoint1(0.0, 0.0, 0.0);
 holePackageBuilder1->HolePosition()->AddToSection(rules2,
 null,null,null,helpPoint1,Section::ModeCreate, false);
}
else //if points are input from a vector
{
 Xform *nullXform(NULL);
 Point *point2;
 for(int i=0;i<points.size();i++){
 point2 = workPart->Points()->CreatePoint(points[i], nullXform,
 SmartObject::UpdateOptionWithinModeling);
 holePackageBuilder1->HolePosition()->AddSmartPoint(point2,
 0.00095);
 }
}

WaveLinkPoint

The WaveLinkPoint routine is called in a loop to create the associative copies of

the fastener location points in the mating component. It reads in one point, the target

component, and the collection of wave linked points. Each time it is called it adds the

linked point to the existing collection. Here is the code for the routine.

void WaveLinkPoint(NXOpen::Point *point1,
 Assemblies::Component *comp1,
 std::vector<Point *> &WavedPoints)
{
 //declare object tags
 tag_t point,link_point, feat, comp, xform, target_part;

www.manaraa.com

 77

 tag_t target_object = NULL_TAG,
 //get tags from input objects
 point = point1->GetTag();
 comp = comp1->GetTag();

 if ((point != NULL_TAG)&& (comp != NULL_TAG)) //if inputs are valid
 {
 target_part = UF_ASSEM_ask_prototype_of_occ(comp);
 ensure_part_fully_loaded(target_part);
 target_object = UF_OBJ_cycle_all(target_part, target_object);

 if (UF_ASSEM_is_occurrence(point)){
 UF_SO_create_xform_assy_ctxt(target_part,
 UF_ASSEM_ask_part_occurrence(point), comp, &xform);
 point = UF_ASSEM_ask_prototype_of_occ(point);
 }
 else{
 UF_SO_create_xform_assy_ctxt(target_part, NULL_TAG,comp,&xform);
 }

 UF_WAVE_create_linked_pt_point(point,NULL_TAG,target_object,&feat);
 UF_WAVE_ask_linked_feature_geom(feat, &link_point);
 //convert the point tag back to a C++ object
 TaggedObject *pnt = NXOpen::NXObjectManager::Get (link_point);
 Point *point1(dynamic_cast<Point *>(pnt));
 //add the point object to the collection
 WavedPoints.push_back(point1);

 }
}

ProjectPoints

The ProjectPoints routine takes in a vector of points and projects them to a surface

selected by the user. It then returns the projection feature so that it can be passed into the

CreateSimpleHole routine. The portion of code that adds the points to the feature section

is shown below

Xform *nullXform(NULL);
Point *point1;
for(int i =0;i<pnts.size();i++) //pnts = input vector
{
 point1 = workPart->Points()->CreatePoint(pnts[i], nullXform,

SmartObject::UpdateOptionWithinModeling);
 projectCurveBuilder1->SectionToProject()->AddSmartPoint(point1,0.001);
}

www.manaraa.com

 78

Summary

After Operation 3b is complete, the fasteners holding the frame to the interstage

and the fasteners holding the door to the frame are completely defined and linked

associatively guaranteeing that the components mate properly. Figures Figure 4-24

through Figure 4-27 show the same components from Figures 4-20 through 4-23 with the

fastener details added.

Figure 4-24: Top view of fastener details for a stiffened, load-bearing configuration.

www.manaraa.com

 79

Figure 4-25: Section view of fastener details for a stiffened, load-bearing configuration

Figure 4-26: Top view of fastener details for an un-stiffened, non load-bearing configuration.

www.manaraa.com

 80

Figure 4-27: Section view of fastener details for an un-stiffened, non load-bearing configuration

www.manaraa.com

 81

5 Results

As stated in Chapter 1, the objectives of this thesis are:

• Create a framework of intelligent, high-level, operations that can be used to

quickly design a wide range of rocket interstage components and assemblies.

• Show that these features/operations decrease the design time without impeding

innovation.

To determine whether these objectives were met, and to what extent they were or

were not successful, three elements of the objectives will be evaluated:

1. the range of designs supported by the framework,

2. the time savings observed, and

3. The proportion of the design left open to the engineer.

5.1 Range of supported designs

As a theoretical framework, the methods developed in this thesis will work for

any interstage assembly design. In practice, there are certain limitations. The

implementation described in Chapter 4 is capable of supporting any interstage design,

subject to these limitations:

www.manaraa.com

 82

Interface Manager Limitations
• The interfaces must be either cylindrical or conical bolted flanges
• The fastener pattern must be either a single row or a double offset row pattern
• The distances from the fastener centerlines to the flange edges and between

the fastener rows are predetermined but may be changed later.
• The axial position of any joint must be at least nine diameters from the origin.
• The minimum radius for any interface is three inches.
• An assembly component must contain either one or two interfaces.

Component Cross Sections Limitations

• All cross sections must contain closed loops and must not self-intersect.
• The thickness of any bolt flange must be less than five inches.
• All cross sections must extend at least the entire length of the control

structure’s flange.

Detail Features Limitations
• The chamfer and fillet dimensions cannot be pre-specified. They may only be

changed after running the application.

Insert Door Limitations
• The cutout sketch must be on a plane that is tangent to the interstage surface at

the center of the cutout.
• The door cutout sketch must be a closed loop with no convex regions and no

self-intersections
• The cutout region’s minimum width must be at least ten times the inner

fastener diameter
• There space between the cutout sketch and the interstage flange on both sides

of the cutout must be at least five outer diameters plus the stiffening length
• The stiffening cross section around the cutout is predetermined
• There are only two door frame cross sections to choose from

Door Fasteners Limitations
• The offset distances from the flange edges and the spacing between fasteners

is predetermined
• There is only one row of fasteners per flange

To illustrate the spectrum of designs that are still possible, consider the total

number of possible combinations of interfaces for one component (Nc). Let Nt be the

total number of available interface types and Ni be the maximum number of interfaces

associated with one component. Nc can then be calculated by

www.manaraa.com

 83

∑
−

=

−=
1

0

i
i

N

j

jN
tc NN . 5-1

which accounts for components with any number of joints from 1 to Ni.

For the current implementation of the InterfaceManager framework, Nt = 8

and Ni = 2. Therefore, for this implementation of the framework, Nc = 82 + 8 = 72. This

means that there are 72 distinct joint combinations that can be used to create each

component. Furthermore, the assembly can include any number of components and the

variations of cross sections for each component is unlimited.

The framework can be expanded to include practically any type of interface found

on rocket interstages, and to allow more than two interfaces per component. Thus the

framework has the potential to cover the entire range of designs for interstage

configurations. The method used to build this framework is also general enough to work

for other product types. With some additional development, extruded cross sections and

access doors on any input surfaces would also be possible.

5.2 Time savings

To determine the value of the proposed methods, three test subjects were asked to

perform a set of modeling tasks using both the traditional approach and the approach

implemented in this thesis. Each task correlated with one of the method’s main

Operations. For each test subject, the number of key-strokes and mouse clicks, and the

completion time was recorded for each method. The results from each task were

compiled to estimate the time and effort required to model an entire interstage assembly.

www.manaraa.com

 84

The test subjects were graduate engineering students with two to three years’

experience using NX. Therefore the test subjects’ completion times are most likely

longer compared to those of more experienced engineers.

5.2.1 Task 1: Interface manager

In task 1, the test subject must define the control structure for one cylindrical

interface and one conical interface including the hole location sketches. He must then

add a new component to the assembly, create the linked geometry features, and create a

fully constrained sketch of the part cross section. Table 5-1 lists the results of the three

test subjects for both methods and the comparison between the two methods. There was

a testing error so some data for test subject 3 is unavailable.

Table 5-1: Task 1 completion statistics

Traditional Method Proposed Method Percent Difference Test
Subject Key-

strokes
Mouse
Clicks

Time
(min.)

Key-
strokes

Mouse
Clicks

Time
(min.)

Key-
strokes

Mouse
Clicks

Time

1 864 717 45.27 84 99 5.48 90.60% 86.19% 87.89%
2 1236 947 61.78 89 95 4.67 92.80% 89.97% 92.45%
3 error error 41.73 54 148 6.87 — — 83.75%
Average 1065 832 49.59 75.67 114 5.64 91.7% 88.1% 88.0%

5.2.2 Task 2: Detail features

In task 2, the subject must make a revolve feature from the cross section, add

chamfer and blend features, and create the hole extrudes and patterns. Results from the

three test subjects are listed below in Table 5-2.

www.manaraa.com

 85

Table 5-2: Task 2 completion statistics

Traditional Method Proposed Method Percent Difference Test
Subject Key-

strokes
Mouse
Clicks

Time
(min.)

Key-
strokes

Mouse
Clicks

Time
(min.)

Key-
strokes

Mouse
Clicks

Time

1 220 201 14.28 0 2 0.12 100% 99.00% 99.18%
2 72 178 10.48 0 3 0.10 100% 98.31% 99.05%
3 31 199 9.68 0 2 0.10 100% 98.99% 98.97%
Average 107.6 192.7 11.48 0 2.3 0.11 100% 98.77% 99.07%

5.2.3 Task 3: Insert door

In task 3, an interstage component is provided as well as a sketch of the door

cutout. The subject is asked to make the cutout in the interstage, and create the door

frame and door component bodies. The simplest door configuration was selected, so the

results listed below in Table 5-3 will be conservative.

Table 5-3: Task 3 completion statistics

Traditional Method Proposed Method Percent Difference Test
Subject Key-

strokes
Mouse
Clicks

Time
(min.)

Key-
strokes

Mouse
Clicks

Time
(min.)

Key-
strokes

Mouse
Clicks

Time

1 205 635 28.80 0 14 1.37 100% 97.80% 95.25%
2 208 900 41.22 10 16 1.52 95.19% 98.22% 96.32%
3 404 641 46.50 16 19 2.10 96.04% 97.04% 95.48%
Average 272.3 725.3 38.8 8.7 16.3 1.7 97.08% 97.68% 95.69%

5.2.4 Task 4: Door fasteners

Finally, the test subject must add details for fasteners. For the traditional method,

the user is only required to create five holes on one side of the interstage cutout and the

mating holes for the door frame. The thesis method still creates the complete set of holes

www.manaraa.com

 86

for all three components, so the data listed in Table 5-4 represents the results after having

been multiplied by eight to compensate for this difference.

Table 5-4: Task 4 completion statistics

Traditional Method Proposed Method Percent Difference Test
Subject Key-

strokes
Mouse
Clicks

Time
(min.)

Key-
strokes

Mouse
Clicks

Time
(min.)

Key-
strokes

Mouse
Clicks

Time

1 456 784 42.4 0 13 0.87 100% 98.34% 97.96%
2 312 736 38.53 0 14 1.17 100% 98.10% 96.97%
3 240 672 37.07 0 15 1.30 100% 97.77% 96.49%
Average 336 730.7 39.3 0 14 1.11 100% 98.07% 97.14%

5.2.5 Entire assembly

The results from the three test subjects can be used to extrapolate an estimate for

the effort required to create the parametric models for an entire interstage assembly. The

layout of a fictitious interstage assembly is depicted in Figure 5-1. It includes four

interfaces, five components, and will have two access doors. Table 5-5 lists the estimated

average results for this configuration based on these assumptions:

1. Creating the four interfaces will take twice as much effort as measured in Task 1.

2. Inserting the detail features on all five components will require five times the

effort measured in Task 2.

3. Inserting the doors and their fasteners will require twice the effort measured in

Tasks 3 and 4.

www.manaraa.com

 87

Figure 5-1 Interstage assembly configuration

Table 5-5: Estimated results for entire assembly

 Key-strokes Mouse Clicks Time (min.)
Traditional Method 3885.0 5539.3 313.0
Proposed Method 168.7 300.3 17.4
Percent Difference 95.66% 94.58% 94.45%

5.3 Openness of design

There are several major aspects of the application that allow flexibility in the

design. The InterfaceManager is the primary one. It allows the engineer to define

any number of component interfaces, and provides a substantial number of interface

types to choose from as mentioned in section 5.1. It also lets him/her create an assembly

with any number of components. Another key to providing openness is the fact that the

designer creates the component cross section sketches. This permits virtually unlimited

www.manaraa.com

 88

variations in the design of the part bodies. This is especially valuable for the actual

interstage component since many different types of cross sections are used.

The InsertDoor operation also gives the designer a large amount of freedom.

Since the cutout region is also sketched by the engineer, the shape of the door is almost

entirely up to him or her. The only restrictions are that the cutout sketch be a closed loop

with no convex portions. The disadvantage of the current implementation of the

InsertDoor operation is that the topology of the interstage stiffening cross section is hard-

coded. Additional development should focus on allowing a more flexible definition

method for the stiffening cross section.

Overall, the fact that the models are entirely parametric means that any of the

dimensions and expressions can be changed to suit the specific needs of the designer.

Therefore, even the portions of the geometric design that are hard coded into the

application, such as the flange length proportions or the chamfer and fillet sizes, can be

modified after running the application.

To quantify the level of openness provided by the application, each of the primary

decisions which must be made by the designer has been assigned a score from 0 to 3 with

the following significances.

0. The designer cannot make changes to the decision

1. The designer can choose from a finite set of options

2. The designer can modify the parameters of the decision

3. The designer can change anything about the decision within normal design

limits

Table 5-6 lists descriptions of each of the primary decisions and its openness score.

www.manaraa.com

 89

Table 5-6: Openness scores for primary design decisions

Score

3
3
3
2

1
3
2
1
2

3
3
3
1
1

2
1
2

Decision
Assembly Layout

number of components
topology of each part’s cross section
Dimensions of each part’s cross section
Chamfers and fillets

Joining method for each part-to-part interface
Interface type
Interface position
fastener size
fastener pattern
dimensions of the joint

Doors
Number of doors
Door shape and size
Door position

Fastener pattern
Dimensions of the joint

Stiffening cross section
Door frame cross section

Joining methods for door components
Fastener size

Several design decisions received low openness scores. It would be possible to

increase the low scores with further development and research. Several suggestions for

such future work will be given in Chapter 6.

5.4 Discussion of results

The primary difficulty in creating parametric design tools is balancing the

tradeoffs between speed and design freedom. The results presented in Chapter 5 have

shown that the methods developed in this thesis are able to decrease the required time and

effort by more than 90% while still leaving a large majority of the primary decisions open

to the designer.

Although these methods have been developed specifically for designing rocket

interstage assemblies, they have potential application in any assembly dominated by

www.manaraa.com

 90

similarly oriented 2½ dimensional components, i.e. uniform cross sections that are either

extruded in the same direction or revolved around the same axis. The door insertion and

fastener methods can also be applied in other disciplines such as pressure vessel design.

A primary advantage of these high-level programmatic operations over other

design automation tools, such as UDFs, is that these methods are able to operate on

multiple components. Therefore, they can create the inter-part associativities and

expressions that are necessary in parametric assembly modeling. In addition, they are

able to generate much larger sets of geometry since UDFs cannot use their own entities as

inputs to their other features e.g. A UDF would not be able to contain an offset surface

feature and a feature that trims said offset surface, since the user would not be able to

identify the input surface to the trim feature.

Other important advantages of the methods presented here are that they drastically

reduce user error and can be executed by novice engineers, or even technicians. During

testing, many of the manual operations had to be repeated or corrected because the wrong

input geometry was selected, or because input values were wrong. Programmatic

methods do not have these problems. There were still some user errors while testing the

programmatic methods, but they were usually due to unclear instructions and were much

less frequent.

One disadvantage of the author’s methods, is that they do not currently provide

special functionality for updating the geometry after the model is changed. For most of

the geometry, this is handled automatically because standard NX features are used.

However for features that depend on custom calculations, such as the smart point features

that are inserted based on the curve lengths, the standard NX update algorithms would

www.manaraa.com

 91

not suffice. If the curve lengths change, the number of smart points would not. Custom

updating routines would also be able to ensure that offset directions do not flip, and that

the trimming regions remain correct.

The author’s methods also lack special deleting functionality. The operations can

be undone immediately after execution, but if a user wanted to remove a door later in the

design process, for example, he or she would have to delete all of the components,

features, and expressions manually. This would be tedious and error-prone.

www.manaraa.com

 92

www.manaraa.com

 93

6 Conclusions

The objectives of this thesis were to show that high-level, product type-specific

operations can accelerate the design of a wide range of rocket interstage components and

assemblies and that these operations will decrease the design time without impeding

innovation.

In Chapter 3, a method was developed to define the assembly layout using a

framework of C++ classes and user interfaces called the InterfaceManager. While

this theoretical framework was capable of supporting any assembly layout, the

framework that was implemented in Chapter 4 was limited to eight types of interfaces.

Chapter 5 demonstrated that the InterfaceManager still supported a very large

number of interface combinations even with these limitations and was able to create the

interfaces around 90% faster than by using the traditional method. From these results we

can conclude that product type-specific operations can greatly reduce modeling time of

assembly layouts and can be flexible enough to support wide spectrums of designs.

Chapter 3 also discussed methods for creating the detailed features on each part in

the assembly including the revolve features, chamfers, fillets, and hole patterns. These

methods, as developed in Chapter 4, resulted in more than a 98% reduction of modeling

time and effort. Since the inputs for these detail features were defined by the

InterfaceManager, no effort was required of the user to detail the parts. These

www.manaraa.com

 94

results prove that CAD design can be streamlined extensively using high-level

operations.

The methods from Chapter 3 that add access doors with fasteners to the interstage

were also successfully implemented in Chapter 4. After analyzing their performance,

Chapter 5 proved that these methods also resulted in excellent time savings while leaving

most of the major design decisions open to innovation.

To summarize, this thesis has shown that CAD modeling can be extremely

streamlined through the use of high-level, product type-specific operations. It has shown

that such high-level operations can work for a wide range of components and assemblies

and can be created in a way that leaves the majority of the primary design decisions open

to the user. The methods developed in this thesis have also reduced modeling time and

effort by at least about 90%. Recommendations will now be given for researchers

interested in continuing similar work.

6.1 Recommendations

The results presented in Chapter 5 show that these methods have excellent

potential but there are still many improvements that can be made to increase the scope of

supported designs and the functionality of the operations. Implementing the following

recommendations would increase the openness scores as discussed in section 5.3.

The largest limitation of the current method is that it currently only applies to

revolved parts. The InterfaceManager framework should be extended for use with

extruded parts which also have 2 ½ dimensions. Extending the methods to fully three

dimensional products would require much more research but would be very valuable.

www.manaraa.com

 95

The InterfaceManager should also be extended to include additional interface

types. For interstage assemblies alone, there are several more interfaces that are

commonly used, such as manacle joints and weldments.

Along with these improvements to the InterfaceManager, there are several

areas of needed improvement to the InsertDoor operations. Supporting

extruded parts would require the InsertDoor operation to work on any input surface.

This improvement would be trivial. Research should also be focused on developing a

more general method for defining the stiffening cross section around the door cutout. If

the operation required the user to create a sketch of the desired cross section, it could

investigate the sketch geometry and determine which offset features would be needed as

well as their distances. It would also be able to determine the correct trimming features.

Most of the operations could be improved if further researchers developed special

updating routines and deletion routines. The DoorFasteners operation could update

the fastener patterns when the door size changes. The InsertDoor operation could

ensure correct offset directions and trimming regions during update cycles. A

DeleteDoor operation would be very useful during the design cycle so that users

would not have to manually delete every part, feature and expression.

www.manaraa.com

 96

www.manaraa.com

 97

7 References

Lendermann, C. (2005). Associative parametric CAE methods in the aircraft pre-deisgn.
Aerospace Science and Technology. Vol. 9, No. 7. pp 641-651.

Hoffman, C.M, Joan-Arinyo, R. (1998). On User-defined Features. Computer Aided
Design, Vol. 30, No. 5. pp 321-352.

Elliott, J. (2004). An automated approach to feature-based design for reusable
parameter-rich surface models. M. S. Thesis, Brigham Young University

Bidarra, R., Idri, A., Noort, A., Bronsvoort, WF. (1998). Declarative user-defined feature
classes. CD-ROM Proceedings of the 1998 ASME Design Engineering Technical
Conferences, 13–16 September, Atlanta, GA, USA, New York: ASME.

Shah, J.J., Ali, A., Rogers, M.T. (1994). Investigation of declarative feature modeling.
Proceedings of the ASME 1994 Computers in Engineering Conference, ASME,
NewYork, Vol. 1, pp. 1-11.

Tang, M., Wen, Y., Mi, X.,Dong, J.; (2001). Parametric modeling with user-defined
features. Computer Supported Cooperative Work in Design, The Sixth
International Conference on, 12-14 July, pp 207 – 211.

Lamarche, B., Rivest, L. (2007). Dynamic Product Modeling with Inter-Features
Associations: Comparing Customization and Automation. Computer-Aided
Design & Applications. Vol. 4, No. 6. pp 877-886.

Jankowski, G. (2005). Solid Thinking: Using Functional Features to Build Plastic Parts.
Cadalyst Nov. 15, 2005. Retrieved on 12/10/07 from:
http://manufacturing.cadalyst.com/manufacturing/article/articleDetail.jsp?id=197
017

Huh, Y.and Kim, S. (1991). A knowledge-based CAD system for concurrent product
design in injection moulding. International Journal of Computer Integrated
Manufacturing.Vol. 4, No. 4. pp. 209 – 218.

http://manufacturing.cadalyst.com/manufacturing/article/articleDetail.jsp?id=197017
http://manufacturing.cadalyst.com/manufacturing/article/articleDetail.jsp?id=197017

www.manaraa.com

 98

Ong, S.K., Prombanpong, S., Lee, K.S. (1995). An object-oriented approach to computer-
aided design of a plastic injection mould. Journal of Intelligent Manufacturing.
Vol. 6. pp 1-10.

Delap, D., Hogge, J., Jensen, C. (2006). CAD-centric creation and optimization of a gas
turbine flowpath module with multiple parameterizations. Computer-Aided
Design & Applications. Vol. 3, Nos. 1-4, pp 175-184.

Danjou, S., Lupa, N., Koehler, P. (2008). Approach for Automated Product Modeling
Using Knowledge-Based Design Features. Computer-Aided Design &
Applications. Vol. 5, No. 5, 2008, pp 622-629.

Emch, F. (2002). Impact of System-Level Engineering Approaches on the Airframe
Development Cycle Via Integration of KBE with CAD Modeling and PDM. RTO
AVI Symposium. April 2002.

Mosca, F., Di Martino, C., Aleixos, N. (2001). Complex CAD project management by the
means of designing criteria control tools. Deployment of a vehicle gearbox
archetype with the aid of WAVE by UNIGRAPHICS. XII ADM International
Conference. September 2001.

Ma Y.-S. et. al. (2007). Associative assembly design features: concept, implementation
and application. The International Journal, advanced manufacturing technology.
Vol. 32, No. 5, 2007, pp 434-444.

Zeid, I. (2005). Mastering CAD/CAM. Boston: McGraw Hill

	High-level, Product Type-specific Programmatic Operations for Streamlining Associative Computer-aided Design
	BYU ScholarsArchive Citation

	Title Page
	Abstract
	Acknowledgments
	Table of Contents
	List of Tables
	List of Figures
	1 Introduction
	1.2 Thesis objective
	1.3 Delimitation of the problem
	1.4 Document organization

	2 Literature Review
	2.1 Definitions
	2.2 Parametric modeling
	2.3 High level features
	2.4 Product specific design applications
	2.5 Associativity
	2.5.1 Top-Down modeling method
	2.5.2 Assembly features

	3 Methods
	3.1 Overall method for design automation
	3.2 Operation 1: control structure, part ownership, geometric links
	3.2.1 Application architecture
	3.2.2 Application procedure
	3.2.3 Scope

	3.3 Operation 2: Cross sections, solids, detail features
	3.3.1 Step 1: Part cross sections
	3.3.2 Step 2: Solids
	3.3.3 Step 3: Blends and chamfers
	3.3.4 Step 4: Fastener detail features

	3.4 Operation 3: Doors, door frames, and interstage alterations
	3.4.1 Operation 3a: Component bodies
	Step 1: Altering the interstage
	Step 2: Create door frame
	Step 3: Create door

	3.4.2 Operation 3b: Door fastener holes

	4 Implementation
	4.1 Operation 1: Interface manager
	4.1.1 Joint object class
	4.1.2 Conical joint object class
	4.1.3 Joint derived part class
	4.1.4 GUI

	4.2 Operation 2: Detail features
	4.2.1 Revolve
	4.2.2 Detail features
	4.2.3 Extrude
	4.2.4 Pattern

	4.3 Operation 3: Insert door
	4.3.1 Operation 3a: Components
	Interstage
	Frame
	Door
	Results

	4.3.2 Operation 3b: Door fasteners
	MakeOffsetHoles
	CreateSimpleHole
	WaveLinkPoint
	ProjectPoints
	Summary

	5 Results
	5.1 Range of supported designs
	5.2 Time savings
	5.2.1 Task 1: Interface manager
	5.2.2 Task 2: Detail features
	5.2.3 Task 3: Insert door
	5.2.4 Task 4: Door fasteners
	5.2.5 Entire assembly

	5.3 Openness of design
	5.4 Discussion of results

	6 Conclusions
	6.1 Recommendations

	7 References

